convert nodes_lt_upsampler nodes to V3 schema

This commit is contained in:
bigcat88 2026-02-12 15:47:20 +02:00
parent 4a93a62371
commit 698abf5481

View File

@ -1,32 +1,32 @@
from comfy import model_management from comfy import model_management
from comfy_api.latest import ComfyExtension, IO
from typing_extensions import override
import math import math
class LTXVLatentUpsampler:
class LTXVLatentUpsampler(IO.ComfyNode):
""" """
Upsamples a video latent by a factor of 2. Upsamples a video latent by a factor of 2.
""" """
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return { return IO.Schema(
"required": { node_id="LTXVLatentUpsampler",
"samples": ("LATENT",), category="latent/video",
"upscale_model": ("LATENT_UPSCALE_MODEL",), is_experimental=True,
"vae": ("VAE",), inputs=[
} IO.Latent.Input("samples"),
} IO.LatentUpscaleModel.Input("upscale_model"),
IO.Vae.Input("vae"),
],
outputs=[
IO.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",) @classmethod
FUNCTION = "upsample_latent" def execute(cls, samples, upscale_model, vae) -> IO.NodeOutput:
CATEGORY = "latent/video"
EXPERIMENTAL = True
def upsample_latent(
self,
samples: dict,
upscale_model,
vae,
) -> tuple:
""" """
Upsample the input latent using the provided model. Upsample the input latent using the provided model.
@ -34,7 +34,6 @@ class LTXVLatentUpsampler:
samples (dict): Input latent samples samples (dict): Input latent samples
upscale_model (LatentUpsampler): Loaded upscale model upscale_model (LatentUpsampler): Loaded upscale model
vae: VAE model for normalization vae: VAE model for normalization
auto_tiling (bool): Whether to automatically tile the input for processing
Returns: Returns:
tuple: Tuple containing the upsampled latent tuple: Tuple containing the upsampled latent
@ -67,9 +66,16 @@ class LTXVLatentUpsampler:
return_dict = samples.copy() return_dict = samples.copy()
return_dict["samples"] = upsampled_latents return_dict["samples"] = upsampled_latents
return_dict.pop("noise_mask", None) return_dict.pop("noise_mask", None)
return (return_dict,) return IO.NodeOutput(return_dict)
upsample_latent = execute # TODO: remove
NODE_CLASS_MAPPINGS = { class LTXVLatentUpsamplerExtension(ComfyExtension):
"LTXVLatentUpsampler": LTXVLatentUpsampler, @override
} async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [LTXVLatentUpsampler]
async def comfy_entrypoint() -> LTXVLatentUpsamplerExtension:
return LTXVLatentUpsamplerExtension()