convert nodes_lt_upsampler nodes to V3 schema

This commit is contained in:
bigcat88 2026-02-12 15:47:20 +02:00
parent 4a93a62371
commit 698abf5481

View File

@ -1,32 +1,32 @@
from comfy import model_management
from comfy_api.latest import ComfyExtension, IO
from typing_extensions import override
import math
class LTXVLatentUpsampler:
class LTXVLatentUpsampler(IO.ComfyNode):
"""
Upsamples a video latent by a factor of 2.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
"upscale_model": ("LATENT_UPSCALE_MODEL",),
"vae": ("VAE",),
}
}
def define_schema(cls):
return IO.Schema(
node_id="LTXVLatentUpsampler",
category="latent/video",
is_experimental=True,
inputs=[
IO.Latent.Input("samples"),
IO.LatentUpscaleModel.Input("upscale_model"),
IO.Vae.Input("vae"),
],
outputs=[
IO.Latent.Output(),
],
)
RETURN_TYPES = ("LATENT",)
FUNCTION = "upsample_latent"
CATEGORY = "latent/video"
EXPERIMENTAL = True
def upsample_latent(
self,
samples: dict,
upscale_model,
vae,
) -> tuple:
@classmethod
def execute(cls, samples, upscale_model, vae) -> IO.NodeOutput:
"""
Upsample the input latent using the provided model.
@ -34,7 +34,6 @@ class LTXVLatentUpsampler:
samples (dict): Input latent samples
upscale_model (LatentUpsampler): Loaded upscale model
vae: VAE model for normalization
auto_tiling (bool): Whether to automatically tile the input for processing
Returns:
tuple: Tuple containing the upsampled latent
@ -67,9 +66,16 @@ class LTXVLatentUpsampler:
return_dict = samples.copy()
return_dict["samples"] = upsampled_latents
return_dict.pop("noise_mask", None)
return (return_dict,)
return IO.NodeOutput(return_dict)
upsample_latent = execute # TODO: remove
NODE_CLASS_MAPPINGS = {
"LTXVLatentUpsampler": LTXVLatentUpsampler,
}
class LTXVLatentUpsamplerExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [LTXVLatentUpsampler]
async def comfy_entrypoint() -> LTXVLatentUpsamplerExtension:
return LTXVLatentUpsamplerExtension()