add batch index logic

This commit is contained in:
BlenderNeko 2023-05-06 15:15:49 +02:00
parent f1bd46c519
commit 9d8ed7b28e
3 changed files with 78 additions and 45 deletions

View File

@ -2,17 +2,26 @@ import torch
import comfy.model_management
import comfy.samplers
import math
import numpy as np
def prepare_noise(latent_image, seed, skip=0):
def prepare_noise(latent_image, seed, noise_inds=None):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
for _ in range(skip):
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1]+1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
return noise
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
def prepare_mask(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""

View File

@ -4,7 +4,7 @@ class LatentRebatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "latents": ("LATENT",),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1000}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
INPUT_IS_LIST = True
@ -14,69 +14,88 @@ class LatentRebatch:
CATEGORY = "latent"
def get_batch(self, latent, i):
samples = latent[i]['samples']
@staticmethod
def get_batch(latents, list_ind, offset):
'''prepare a batch out of the list of latents'''
samples = latents[list_ind]['samples']
shape = samples.shape
mask = latent[i]['noise_mask'] if 'noise_mask' in latent[i] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
if mask.shape[0] < samples.shape[0]:
mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
return samples, mask
if 'batch_index' in latents[list_ind]:
batch_inds = latents[list_ind]['batch_index']
else:
batch_inds = [x+offset for x in range(shape[0])]
return samples, mask, batch_inds
def get_slices(self, tensors, num, batch_size):
@staticmethod
def get_slices(indexable, num, batch_size):
'''divides an indexable object into num slices of length batch_size, and a remainder'''
slices = []
for i in range(num):
slices.append(tensors[i*batch_size:(i+1)*batch_size])
if num * batch_size < tensors.shape[0]:
return slices, tensors[num * batch_size:]
slices.append(indexable[i*batch_size:(i+1)*batch_size])
if num * batch_size < len(indexable):
return slices, indexable[num * batch_size:]
else:
return slices, None
@staticmethod
def slice_batch(batch, num, batch_size):
result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
return list(zip(*result))
@staticmethod
def cat_batch(batch1, batch2):
if batch1[0] is None:
return batch2
result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
return result
def rebatch(self, latents, batch_size):
batch_size = batch_size[0]
output_list = []
current_samples = None
current_masks = None
current_batch = (None, None, None)
processed = 0
for i in range(len(latents)):
# fetch new entry of list
samples, masks = self.get_batch(latents, i)
#samples, masks, indices = self.get_batch(latents, i)
next_batch = self.get_batch(latents, i, processed)
processed += len(next_batch[2])
# set to current if current is None
if current_samples is None:
current_samples = samples
current_masks = masks
if current_batch[0] is None:
current_batch = next_batch
# add previous to list if dimensions do not match
elif samples.shape[-1] != current_samples.shape[-1] or samples.shape[-2] != current_samples.shape[-2]:
s = dict()
sample_slices, _ = self.get_slices(current_samples, 1, batch_size)
mask_slices, _ = self.get_slices(current_masks, 1, batch_size)
output_list.append({'samples': sample_slices[0], 'noise_mask': mask_slices[0]})
current_samples = samples
current_masks = masks
elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
current_batch = next_batch
# cat if everything checks out
else:
current_samples = torch.cat((current_samples, samples))
current_masks = torch.cat((current_masks, masks))
current_batch = self.cat_batch(current_batch, next_batch)
# add to list if dimensions gone above target batch size
if current_samples.shape[0] > batch_size:
num = current_samples.shape[0] // batch_size
sample_slices, latent_remainder = self.get_slices(current_samples, num, batch_size)
mask_slices, mask_remainder = self.get_slices(current_masks, num, batch_size)
if current_batch[0].shape[0] > batch_size:
num = current_batch[0].shape[0] // batch_size
sliced, remainder = self.slice_batch(current_batch, num, batch_size)
for i in range(num):
output_list.append({'samples': sample_slices[i], 'noise_mask': mask_slices[i]})
output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
current_batch = remainder
current_samples = latent_remainder
current_masks = mask_remainder
#add remainder
if current_samples is not None:
sample_slices, _ = self.get_slices(current_samples, 1, batch_size)
mask_slices, _ = self.get_slices(current_masks, 1, batch_size)
output_list.append({'samples': sample_slices[0], 'noise_mask': mask_slices[0]})
if current_batch[0] is not None:
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
#get rid of empty masks
for s in output_list:
if s['noise_mask'].mean() == 1.0:
del s['noise_mask']
return (output_list,)

View File

@ -563,16 +563,21 @@ class LatentFromBatch:
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
FUNCTION = "frombatch"
CATEGORY = "latent"
def rotate(self, samples, batch_index):
def frombatch(self, samples, batch_index):
s = samples.copy()
s_in = samples["samples"]
batch_index = min(s_in.shape[0] - 1, batch_index)
s["samples"] = s_in[batch_index:batch_index + 1].clone()
s["batch_index"] = batch_index
if "noise_mask" in samples:
s["noise_mask"] = samples["noise_mask"][batch_index:batch_index + 1].clone()
if "batch_index" not in s:
s["batch_index"] = [batch_index]
else:
s["batch_index"] = samples["batch_index"][batch_index:batch_index + 1]
return (s,)
class LatentUpscale:
@ -747,8 +752,8 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
skip = latent["batch_index"] if "batch_index" in latent else 0
noise = comfy.sample.prepare_noise(latent_image, seed, skip)
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent: