mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-14 00:00:57 +08:00
Merge branch 'Main' into feature/blockweights
This commit is contained in:
commit
d8147b6635
62
comfy/clip_vision.py
Normal file
62
comfy/clip_vision.py
Normal file
@ -0,0 +1,62 @@
|
||||
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor
|
||||
from .utils import load_torch_file, transformers_convert
|
||||
import os
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
config = CLIPVisionConfig.from_json_file(json_config)
|
||||
self.model = CLIPVisionModelWithProjection(config)
|
||||
self.processor = CLIPImageProcessor(crop_size=224,
|
||||
do_center_crop=True,
|
||||
do_convert_rgb=True,
|
||||
do_normalize=True,
|
||||
do_resize=True,
|
||||
image_mean=[ 0.48145466,0.4578275,0.40821073],
|
||||
image_std=[0.26862954,0.26130258,0.27577711],
|
||||
resample=3, #bicubic
|
||||
size=224)
|
||||
|
||||
def load_sd(self, sd):
|
||||
self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def encode_image(self, image):
|
||||
inputs = self.processor(images=[image[0]], return_tensors="pt")
|
||||
outputs = self.model(**inputs)
|
||||
return outputs
|
||||
|
||||
def convert_to_transformers(sd):
|
||||
sd_k = sd.keys()
|
||||
if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k:
|
||||
keys_to_replace = {
|
||||
"embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding",
|
||||
"embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight",
|
||||
"embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight",
|
||||
"embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias",
|
||||
"embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight",
|
||||
"embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias",
|
||||
"embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight",
|
||||
}
|
||||
|
||||
for x in keys_to_replace:
|
||||
if x in sd_k:
|
||||
sd[keys_to_replace[x]] = sd.pop(x)
|
||||
|
||||
if "embedder.model.visual.proj" in sd_k:
|
||||
sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1)
|
||||
|
||||
sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32)
|
||||
return sd
|
||||
|
||||
def load_clipvision_from_sd(sd):
|
||||
sd = convert_to_transformers(sd)
|
||||
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
clip = ClipVisionModel(json_config)
|
||||
clip.load_sd(sd)
|
||||
return clip
|
||||
|
||||
def load(ckpt_path):
|
||||
sd = load_torch_file(ckpt_path)
|
||||
return load_clipvision_from_sd(sd)
|
||||
18
comfy/clip_vision_config_h.json
Normal file
18
comfy/clip_vision_config_h.json
Normal file
@ -0,0 +1,18 @@
|
||||
{
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 32,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 1024,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
@ -1,8 +1,4 @@
|
||||
{
|
||||
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||
"architectures": [
|
||||
"CLIPVisionModel"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "quick_gelu",
|
||||
@ -18,6 +14,5 @@
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.24.0"
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
@ -78,7 +78,7 @@ class DDIMSampler(object):
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
denoise_function=None,
|
||||
cond_concat=None,
|
||||
extra_args=None,
|
||||
to_zero=True,
|
||||
end_step=None,
|
||||
**kwargs
|
||||
@ -101,7 +101,7 @@ class DDIMSampler(object):
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule,
|
||||
denoise_function=denoise_function,
|
||||
cond_concat=cond_concat,
|
||||
extra_args=extra_args,
|
||||
to_zero=to_zero,
|
||||
end_step=end_step
|
||||
)
|
||||
@ -174,7 +174,7 @@ class DDIMSampler(object):
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule,
|
||||
denoise_function=None,
|
||||
cond_concat=None
|
||||
extra_args=None
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@ -185,7 +185,7 @@ class DDIMSampler(object):
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
||||
ucg_schedule=None, denoise_function=None, cond_concat=None, to_zero=True, end_step=None):
|
||||
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
@ -225,7 +225,7 @@ class DDIMSampler(object):
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, cond_concat=cond_concat)
|
||||
dynamic_threshold=dynamic_threshold, denoise_function=denoise_function, extra_args=extra_args)
|
||||
img, pred_x0 = outs
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
@ -249,11 +249,11 @@ class DDIMSampler(object):
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None, denoise_function=None, cond_concat=None):
|
||||
dynamic_threshold=None, denoise_function=None, extra_args=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if denoise_function is not None:
|
||||
model_output = denoise_function(self.model.apply_model, x, t, unconditional_conditioning, c, unconditional_guidance_scale, cond_concat)
|
||||
model_output = denoise_function(self.model.apply_model, x, t, **extra_args)
|
||||
elif unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
model_output = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
|
||||
@ -1317,12 +1317,12 @@ class DiffusionWrapper(torch.nn.Module):
|
||||
self.conditioning_key = conditioning_key
|
||||
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
|
||||
|
||||
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None, control=None):
|
||||
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None, control=None, transformer_options={}):
|
||||
if self.conditioning_key is None:
|
||||
out = self.diffusion_model(x, t, control=control)
|
||||
out = self.diffusion_model(x, t, control=control, transformer_options=transformer_options)
|
||||
elif self.conditioning_key == 'concat':
|
||||
xc = torch.cat([x] + c_concat, dim=1)
|
||||
out = self.diffusion_model(xc, t, control=control)
|
||||
out = self.diffusion_model(xc, t, control=control, transformer_options=transformer_options)
|
||||
elif self.conditioning_key == 'crossattn':
|
||||
if not self.sequential_cross_attn:
|
||||
cc = torch.cat(c_crossattn, 1)
|
||||
@ -1332,25 +1332,25 @@ class DiffusionWrapper(torch.nn.Module):
|
||||
# TorchScript changes names of the arguments
|
||||
# with argument cc defined as context=cc scripted model will produce
|
||||
# an error: RuntimeError: forward() is missing value for argument 'argument_3'.
|
||||
out = self.scripted_diffusion_model(x, t, cc, control=control)
|
||||
out = self.scripted_diffusion_model(x, t, cc, control=control, transformer_options=transformer_options)
|
||||
else:
|
||||
out = self.diffusion_model(x, t, context=cc, control=control)
|
||||
out = self.diffusion_model(x, t, context=cc, control=control, transformer_options=transformer_options)
|
||||
elif self.conditioning_key == 'hybrid':
|
||||
xc = torch.cat([x] + c_concat, dim=1)
|
||||
cc = torch.cat(c_crossattn, 1)
|
||||
out = self.diffusion_model(xc, t, context=cc, control=control)
|
||||
out = self.diffusion_model(xc, t, context=cc, control=control, transformer_options=transformer_options)
|
||||
elif self.conditioning_key == 'hybrid-adm':
|
||||
assert c_adm is not None
|
||||
xc = torch.cat([x] + c_concat, dim=1)
|
||||
cc = torch.cat(c_crossattn, 1)
|
||||
out = self.diffusion_model(xc, t, context=cc, y=c_adm, control=control)
|
||||
out = self.diffusion_model(xc, t, context=cc, y=c_adm, control=control, transformer_options=transformer_options)
|
||||
elif self.conditioning_key == 'crossattn-adm':
|
||||
assert c_adm is not None
|
||||
cc = torch.cat(c_crossattn, 1)
|
||||
out = self.diffusion_model(x, t, context=cc, y=c_adm, control=control)
|
||||
out = self.diffusion_model(x, t, context=cc, y=c_adm, control=control, transformer_options=transformer_options)
|
||||
elif self.conditioning_key == 'adm':
|
||||
cc = c_crossattn[0]
|
||||
out = self.diffusion_model(x, t, y=cc, control=control)
|
||||
out = self.diffusion_model(x, t, y=cc, control=control, transformer_options=transformer_options)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
@ -1801,3 +1801,75 @@ class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
|
||||
log = super().log_images(*args, **kwargs)
|
||||
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
|
||||
return log
|
||||
|
||||
|
||||
class ImageEmbeddingConditionedLatentDiffusion(LatentDiffusion):
|
||||
def __init__(self, embedder_config=None, embedding_key="jpg", embedding_dropout=0.5,
|
||||
freeze_embedder=True, noise_aug_config=None, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.embed_key = embedding_key
|
||||
self.embedding_dropout = embedding_dropout
|
||||
# self._init_embedder(embedder_config, freeze_embedder)
|
||||
self._init_noise_aug(noise_aug_config)
|
||||
|
||||
def _init_embedder(self, config, freeze=True):
|
||||
embedder = instantiate_from_config(config)
|
||||
if freeze:
|
||||
self.embedder = embedder.eval()
|
||||
self.embedder.train = disabled_train
|
||||
for param in self.embedder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def _init_noise_aug(self, config):
|
||||
if config is not None:
|
||||
# use the KARLO schedule for noise augmentation on CLIP image embeddings
|
||||
noise_augmentor = instantiate_from_config(config)
|
||||
assert isinstance(noise_augmentor, nn.Module)
|
||||
noise_augmentor = noise_augmentor.eval()
|
||||
noise_augmentor.train = disabled_train
|
||||
self.noise_augmentor = noise_augmentor
|
||||
else:
|
||||
self.noise_augmentor = None
|
||||
|
||||
def get_input(self, batch, k, cond_key=None, bs=None, **kwargs):
|
||||
outputs = LatentDiffusion.get_input(self, batch, k, bs=bs, **kwargs)
|
||||
z, c = outputs[0], outputs[1]
|
||||
img = batch[self.embed_key][:bs]
|
||||
img = rearrange(img, 'b h w c -> b c h w')
|
||||
c_adm = self.embedder(img)
|
||||
if self.noise_augmentor is not None:
|
||||
c_adm, noise_level_emb = self.noise_augmentor(c_adm)
|
||||
# assume this gives embeddings of noise levels
|
||||
c_adm = torch.cat((c_adm, noise_level_emb), 1)
|
||||
if self.training:
|
||||
c_adm = torch.bernoulli((1. - self.embedding_dropout) * torch.ones(c_adm.shape[0],
|
||||
device=c_adm.device)[:, None]) * c_adm
|
||||
all_conds = {"c_crossattn": [c], "c_adm": c_adm}
|
||||
noutputs = [z, all_conds]
|
||||
noutputs.extend(outputs[2:])
|
||||
return noutputs
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, N=8, n_row=4, **kwargs):
|
||||
log = dict()
|
||||
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True,
|
||||
return_original_cond=True)
|
||||
log["inputs"] = x
|
||||
log["reconstruction"] = xrec
|
||||
assert self.model.conditioning_key is not None
|
||||
assert self.cond_stage_key in ["caption", "txt"]
|
||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
||||
log["conditioning"] = xc
|
||||
uc = self.get_unconditional_conditioning(N, kwargs.get('unconditional_guidance_label', ''))
|
||||
unconditional_guidance_scale = kwargs.get('unconditional_guidance_scale', 5.)
|
||||
|
||||
uc_ = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
||||
ema_scope = self.ema_scope if kwargs.get('use_ema_scope', True) else nullcontext
|
||||
with ema_scope(f"Sampling"):
|
||||
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=True,
|
||||
ddim_steps=kwargs.get('ddim_steps', 50), eta=kwargs.get('ddim_eta', 0.),
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=uc_, )
|
||||
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
||||
log[f"samplescfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
||||
return log
|
||||
|
||||
@ -307,7 +307,16 @@ def model_wrapper(
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t_continuous] * 2)
|
||||
c_in = torch.cat([unconditional_condition, condition])
|
||||
if isinstance(condition, dict):
|
||||
assert isinstance(unconditional_condition, dict)
|
||||
c_in = dict()
|
||||
for k in condition:
|
||||
if isinstance(condition[k], list):
|
||||
c_in[k] = [torch.cat([unconditional_condition[k][i], condition[k][i]]) for i in range(len(condition[k]))]
|
||||
else:
|
||||
c_in[k] = torch.cat([unconditional_condition[k], condition[k]])
|
||||
else:
|
||||
c_in = torch.cat([unconditional_condition, condition])
|
||||
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
||||
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
||||
|
||||
|
||||
@ -3,7 +3,6 @@ import torch
|
||||
|
||||
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
||||
|
||||
|
||||
MODEL_TYPES = {
|
||||
"eps": "noise",
|
||||
"v": "v"
|
||||
@ -51,12 +50,20 @@ class DPMSolverSampler(object):
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list): ctmp = ctmp[0]
|
||||
if isinstance(ctmp, torch.Tensor):
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
elif isinstance(conditioning, list):
|
||||
for ctmp in conditioning:
|
||||
if ctmp.shape[0] != batch_size:
|
||||
print(f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
if isinstance(conditioning, torch.Tensor):
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
@ -83,6 +90,7 @@ class DPMSolverSampler(object):
|
||||
)
|
||||
|
||||
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
||||
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
||||
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2,
|
||||
lower_order_final=True)
|
||||
|
||||
return x.to(device), None
|
||||
return x.to(device), None
|
||||
|
||||
@ -11,6 +11,7 @@ from .sub_quadratic_attention import efficient_dot_product_attention
|
||||
|
||||
import model_management
|
||||
|
||||
from . import tomesd
|
||||
|
||||
if model_management.xformers_enabled():
|
||||
import xformers
|
||||
@ -504,12 +505,22 @@ class BasicTransformerBlock(nn.Module):
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
self.checkpoint = checkpoint
|
||||
|
||||
def forward(self, x, context=None):
|
||||
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
|
||||
|
||||
def _forward(self, x, context=None):
|
||||
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
||||
x = self.attn2(self.norm2(x), context=context) + x
|
||||
def _forward(self, x, context=None, transformer_options={}):
|
||||
n = self.norm1(x)
|
||||
if "tomesd" in transformer_options:
|
||||
m, u = tomesd.get_functions(x, transformer_options["tomesd"]["ratio"], transformer_options["original_shape"])
|
||||
n = u(self.attn1(m(n), context=context if self.disable_self_attn else None))
|
||||
else:
|
||||
n = self.attn1(n, context=context if self.disable_self_attn else None)
|
||||
|
||||
x += n
|
||||
n = self.norm2(x)
|
||||
n = self.attn2(n, context=context)
|
||||
|
||||
x += n
|
||||
x = self.ff(self.norm3(x)) + x
|
||||
return x
|
||||
|
||||
@ -557,7 +568,7 @@ class SpatialTransformer(nn.Module):
|
||||
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None):
|
||||
def forward(self, x, context=None, transformer_options={}):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
if not isinstance(context, list):
|
||||
context = [context]
|
||||
@ -570,7 +581,7 @@ class SpatialTransformer(nn.Module):
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
x = block(x, context=context[i])
|
||||
x = block(x, context=context[i], transformer_options=transformer_options)
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
||||
|
||||
@ -76,12 +76,12 @@ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, x, emb, context=None):
|
||||
def forward(self, x, emb, context=None, transformer_options={}):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context)
|
||||
x = layer(x, context, transformer_options)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
@ -409,6 +409,15 @@ class QKVAttention(nn.Module):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class Timestep(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, t):
|
||||
return timestep_embedding(t, self.dim)
|
||||
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
@ -470,6 +479,7 @@ class UNetModel(nn.Module):
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
adm_in_channels=None,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
@ -538,6 +548,15 @@ class UNetModel(nn.Module):
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
linear(adm_in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
@ -753,7 +772,7 @@ class UNetModel(nn.Module):
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None, control=None, **kwargs):
|
||||
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
@ -762,6 +781,7 @@ class UNetModel(nn.Module):
|
||||
:param y: an [N] Tensor of labels, if class-conditional.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
transformer_options["original_shape"] = list(x.shape)
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
@ -775,13 +795,13 @@ class UNetModel(nn.Module):
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for id, module in enumerate(self.input_blocks):
|
||||
h = module(h, emb, context)
|
||||
h = module(h, emb, context, transformer_options)
|
||||
if control is not None and 'input' in control and len(control['input']) > 0:
|
||||
ctrl = control['input'].pop()
|
||||
if ctrl is not None:
|
||||
h += ctrl
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb, context)
|
||||
h = self.middle_block(h, emb, context, transformer_options)
|
||||
if control is not None and 'middle' in control and len(control['middle']) > 0:
|
||||
h += control['middle'].pop()
|
||||
|
||||
@ -793,7 +813,7 @@ class UNetModel(nn.Module):
|
||||
hsp += ctrl
|
||||
h = th.cat([h, hsp], dim=1)
|
||||
del hsp
|
||||
h = module(h, emb, context)
|
||||
h = module(h, emb, context, transformer_options)
|
||||
h = h.type(x.dtype)
|
||||
if self.predict_codebook_ids:
|
||||
return self.id_predictor(h)
|
||||
|
||||
@ -34,6 +34,13 @@ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2,
|
||||
betas = 1 - alphas[1:] / alphas[:-1]
|
||||
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||
|
||||
elif schedule == "squaredcos_cap_v2": # used for karlo prior
|
||||
# return early
|
||||
return betas_for_alpha_bar(
|
||||
n_timestep,
|
||||
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
||||
)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
elif schedule == "sqrt":
|
||||
@ -218,6 +225,7 @@ class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
@ -267,4 +275,4 @@ class HybridConditioner(nn.Module):
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
||||
return repeat_noise() if repeat else noise()
|
||||
|
||||
59
comfy/ldm/modules/encoders/kornia_functions.py
Normal file
59
comfy/ldm/modules/encoders/kornia_functions.py
Normal file
@ -0,0 +1,59 @@
|
||||
|
||||
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
#from: https://github.com/kornia/kornia/blob/master/kornia/enhance/normalize.py
|
||||
|
||||
def enhance_normalize(data: torch.Tensor, mean: torch.Tensor, std: torch.Tensor) -> torch.Tensor:
|
||||
r"""Normalize an image/video tensor with mean and standard deviation.
|
||||
.. math::
|
||||
\text{input[channel] = (input[channel] - mean[channel]) / std[channel]}
|
||||
Where `mean` is :math:`(M_1, ..., M_n)` and `std` :math:`(S_1, ..., S_n)` for `n` channels,
|
||||
Args:
|
||||
data: Image tensor of size :math:`(B, C, *)`.
|
||||
mean: Mean for each channel.
|
||||
std: Standard deviations for each channel.
|
||||
Return:
|
||||
Normalised tensor with same size as input :math:`(B, C, *)`.
|
||||
Examples:
|
||||
>>> x = torch.rand(1, 4, 3, 3)
|
||||
>>> out = normalize(x, torch.tensor([0.0]), torch.tensor([255.]))
|
||||
>>> out.shape
|
||||
torch.Size([1, 4, 3, 3])
|
||||
>>> x = torch.rand(1, 4, 3, 3)
|
||||
>>> mean = torch.zeros(4)
|
||||
>>> std = 255. * torch.ones(4)
|
||||
>>> out = normalize(x, mean, std)
|
||||
>>> out.shape
|
||||
torch.Size([1, 4, 3, 3])
|
||||
"""
|
||||
shape = data.shape
|
||||
if len(mean.shape) == 0 or mean.shape[0] == 1:
|
||||
mean = mean.expand(shape[1])
|
||||
if len(std.shape) == 0 or std.shape[0] == 1:
|
||||
std = std.expand(shape[1])
|
||||
|
||||
# Allow broadcast on channel dimension
|
||||
if mean.shape and mean.shape[0] != 1:
|
||||
if mean.shape[0] != data.shape[1] and mean.shape[:2] != data.shape[:2]:
|
||||
raise ValueError(f"mean length and number of channels do not match. Got {mean.shape} and {data.shape}.")
|
||||
|
||||
# Allow broadcast on channel dimension
|
||||
if std.shape and std.shape[0] != 1:
|
||||
if std.shape[0] != data.shape[1] and std.shape[:2] != data.shape[:2]:
|
||||
raise ValueError(f"std length and number of channels do not match. Got {std.shape} and {data.shape}.")
|
||||
|
||||
mean = torch.as_tensor(mean, device=data.device, dtype=data.dtype)
|
||||
std = torch.as_tensor(std, device=data.device, dtype=data.dtype)
|
||||
|
||||
if mean.shape:
|
||||
mean = mean[..., :, None]
|
||||
if std.shape:
|
||||
std = std[..., :, None]
|
||||
|
||||
out: torch.Tensor = (data.view(shape[0], shape[1], -1) - mean) / std
|
||||
|
||||
return out.view(shape)
|
||||
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from . import kornia_functions
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
||||
@ -37,7 +38,7 @@ class ClassEmbedder(nn.Module):
|
||||
c = batch[key][:, None]
|
||||
if self.ucg_rate > 0. and not disable_dropout:
|
||||
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
||||
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
|
||||
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
||||
c = c.long()
|
||||
c = self.embedding(c)
|
||||
return c
|
||||
@ -57,18 +58,20 @@ def disabled_train(self, mode=True):
|
||||
|
||||
class FrozenT5Embedder(AbstractEncoder):
|
||||
"""Uses the T5 transformer encoder for text"""
|
||||
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
||||
|
||||
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
|
||||
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
||||
super().__init__()
|
||||
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
||||
self.transformer = T5EncoderModel.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length # TODO: typical value?
|
||||
self.max_length = max_length # TODO: typical value?
|
||||
if freeze:
|
||||
self.freeze()
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
#self.train = disabled_train
|
||||
# self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
@ -92,6 +95,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
@ -110,7 +114,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
#self.train = disabled_train
|
||||
# self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
@ -118,7 +122,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
|
||||
if self.layer == "last":
|
||||
z = outputs.last_hidden_state
|
||||
elif self.layer == "pooled":
|
||||
@ -131,15 +135,55 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
return self(text)
|
||||
|
||||
|
||||
class ClipImageEmbedder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
jit=False,
|
||||
device='cuda' if torch.cuda.is_available() else 'cpu',
|
||||
antialias=True,
|
||||
ucg_rate=0.
|
||||
):
|
||||
super().__init__()
|
||||
from clip import load as load_clip
|
||||
self.model, _ = load_clip(name=model, device=device, jit=jit)
|
||||
|
||||
self.antialias = antialias
|
||||
|
||||
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
||||
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
||||
self.ucg_rate = ucg_rate
|
||||
|
||||
def preprocess(self, x):
|
||||
# normalize to [0,1]
|
||||
# x = kornia_functions.geometry_resize(x, (224, 224),
|
||||
# interpolation='bicubic', align_corners=True,
|
||||
# antialias=self.antialias)
|
||||
x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bicubic', align_corners=True, antialias=True)
|
||||
x = (x + 1.) / 2.
|
||||
# re-normalize according to clip
|
||||
x = kornia_functions.enhance_normalize(x, self.mean, self.std)
|
||||
return x
|
||||
|
||||
def forward(self, x, no_dropout=False):
|
||||
# x is assumed to be in range [-1,1]
|
||||
out = self.model.encode_image(self.preprocess(x))
|
||||
out = out.to(x.dtype)
|
||||
if self.ucg_rate > 0. and not no_dropout:
|
||||
out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
|
||||
return out
|
||||
|
||||
|
||||
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
||||
"""
|
||||
Uses the OpenCLIP transformer encoder for text
|
||||
"""
|
||||
LAYERS = [
|
||||
#"pooled",
|
||||
# "pooled",
|
||||
"last",
|
||||
"penultimate"
|
||||
]
|
||||
|
||||
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
||||
freeze=True, layer="last"):
|
||||
super().__init__()
|
||||
@ -179,7 +223,7 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
||||
x = self.model.ln_final(x)
|
||||
return x
|
||||
|
||||
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
|
||||
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
||||
for i, r in enumerate(self.model.transformer.resblocks):
|
||||
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
||||
break
|
||||
@ -193,14 +237,73 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
|
||||
"""
|
||||
Uses the OpenCLIP vision transformer encoder for images
|
||||
"""
|
||||
|
||||
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
||||
freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
|
||||
super().__init__()
|
||||
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
|
||||
pretrained=version, )
|
||||
del model.transformer
|
||||
self.model = model
|
||||
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
if self.layer == "penultimate":
|
||||
raise NotImplementedError()
|
||||
self.layer_idx = 1
|
||||
|
||||
self.antialias = antialias
|
||||
|
||||
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
||||
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
||||
self.ucg_rate = ucg_rate
|
||||
|
||||
def preprocess(self, x):
|
||||
# normalize to [0,1]
|
||||
# x = kornia.geometry.resize(x, (224, 224),
|
||||
# interpolation='bicubic', align_corners=True,
|
||||
# antialias=self.antialias)
|
||||
x = torch.nn.functional.interpolate(x, size=(224, 224), mode='bicubic', align_corners=True, antialias=True)
|
||||
x = (x + 1.) / 2.
|
||||
# renormalize according to clip
|
||||
x = kornia_functions.enhance_normalize(x, self.mean, self.std)
|
||||
return x
|
||||
|
||||
def freeze(self):
|
||||
self.model = self.model.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, image, no_dropout=False):
|
||||
z = self.encode_with_vision_transformer(image)
|
||||
if self.ucg_rate > 0. and not no_dropout:
|
||||
z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
|
||||
return z
|
||||
|
||||
def encode_with_vision_transformer(self, img):
|
||||
img = self.preprocess(img)
|
||||
x = self.model.visual(img)
|
||||
return x
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenCLIPT5Encoder(AbstractEncoder):
|
||||
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
|
||||
clip_max_length=77, t5_max_length=77):
|
||||
super().__init__()
|
||||
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
||||
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
||||
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
|
||||
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
|
||||
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
|
||||
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
@ -209,5 +312,3 @@ class FrozenCLIPT5Encoder(AbstractEncoder):
|
||||
clip_z = self.clip_encoder.encode(text)
|
||||
t5_z = self.t5_encoder.encode(text)
|
||||
return [clip_z, t5_z]
|
||||
|
||||
|
||||
|
||||
35
comfy/ldm/modules/encoders/noise_aug_modules.py
Normal file
35
comfy/ldm/modules/encoders/noise_aug_modules.py
Normal file
@ -0,0 +1,35 @@
|
||||
from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
||||
from ldm.modules.diffusionmodules.openaimodel import Timestep
|
||||
import torch
|
||||
|
||||
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
|
||||
def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
if clip_stats_path is None:
|
||||
clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
|
||||
else:
|
||||
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
|
||||
self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
|
||||
self.register_buffer("data_std", clip_std[None, :], persistent=False)
|
||||
self.time_embed = Timestep(timestep_dim)
|
||||
|
||||
def scale(self, x):
|
||||
# re-normalize to centered mean and unit variance
|
||||
x = (x - self.data_mean) * 1. / self.data_std
|
||||
return x
|
||||
|
||||
def unscale(self, x):
|
||||
# back to original data stats
|
||||
x = (x * self.data_std) + self.data_mean
|
||||
return x
|
||||
|
||||
def forward(self, x, noise_level=None):
|
||||
if noise_level is None:
|
||||
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
||||
else:
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
x = self.scale(x)
|
||||
z = self.q_sample(x, noise_level)
|
||||
z = self.unscale(z)
|
||||
noise_level = self.time_embed(noise_level)
|
||||
return z, noise_level
|
||||
117
comfy/ldm/modules/tomesd.py
Normal file
117
comfy/ldm/modules/tomesd.py
Normal file
@ -0,0 +1,117 @@
|
||||
|
||||
|
||||
import torch
|
||||
from typing import Tuple, Callable
|
||||
import math
|
||||
|
||||
def do_nothing(x: torch.Tensor, mode:str=None):
|
||||
return x
|
||||
|
||||
|
||||
def bipartite_soft_matching_random2d(metric: torch.Tensor,
|
||||
w: int, h: int, sx: int, sy: int, r: int,
|
||||
no_rand: bool = False) -> Tuple[Callable, Callable]:
|
||||
"""
|
||||
Partitions the tokens into src and dst and merges r tokens from src to dst.
|
||||
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
|
||||
|
||||
Args:
|
||||
- metric [B, N, C]: metric to use for similarity
|
||||
- w: image width in tokens
|
||||
- h: image height in tokens
|
||||
- sx: stride in the x dimension for dst, must divide w
|
||||
- sy: stride in the y dimension for dst, must divide h
|
||||
- r: number of tokens to remove (by merging)
|
||||
- no_rand: if true, disable randomness (use top left corner only)
|
||||
"""
|
||||
B, N, _ = metric.shape
|
||||
|
||||
if r <= 0:
|
||||
return do_nothing, do_nothing
|
||||
|
||||
with torch.no_grad():
|
||||
|
||||
hsy, wsx = h // sy, w // sx
|
||||
|
||||
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
|
||||
idx_buffer = torch.zeros(1, hsy, wsx, sy*sx, 1, device=metric.device)
|
||||
|
||||
if no_rand:
|
||||
rand_idx = torch.zeros(1, hsy, wsx, 1, 1, device=metric.device, dtype=torch.int64)
|
||||
else:
|
||||
rand_idx = torch.randint(sy*sx, size=(1, hsy, wsx, 1, 1), device=metric.device)
|
||||
|
||||
idx_buffer.scatter_(dim=3, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=idx_buffer.dtype))
|
||||
idx_buffer = idx_buffer.view(1, hsy, wsx, sy, sx, 1).transpose(2, 3).reshape(1, N, 1)
|
||||
rand_idx = idx_buffer.argsort(dim=1)
|
||||
|
||||
num_dst = int((1 / (sx*sy)) * N)
|
||||
a_idx = rand_idx[:, num_dst:, :] # src
|
||||
b_idx = rand_idx[:, :num_dst, :] # dst
|
||||
|
||||
def split(x):
|
||||
C = x.shape[-1]
|
||||
src = x.gather(dim=1, index=a_idx.expand(B, N - num_dst, C))
|
||||
dst = x.gather(dim=1, index=b_idx.expand(B, num_dst, C))
|
||||
return src, dst
|
||||
|
||||
metric = metric / metric.norm(dim=-1, keepdim=True)
|
||||
a, b = split(metric)
|
||||
scores = a @ b.transpose(-1, -2)
|
||||
|
||||
# Can't reduce more than the # tokens in src
|
||||
r = min(a.shape[1], r)
|
||||
|
||||
node_max, node_idx = scores.max(dim=-1)
|
||||
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
||||
|
||||
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
||||
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
||||
dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx)
|
||||
|
||||
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
|
||||
src, dst = split(x)
|
||||
n, t1, c = src.shape
|
||||
|
||||
unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c))
|
||||
src = src.gather(dim=-2, index=src_idx.expand(n, r, c))
|
||||
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
|
||||
|
||||
return torch.cat([unm, dst], dim=1)
|
||||
|
||||
def unmerge(x: torch.Tensor) -> torch.Tensor:
|
||||
unm_len = unm_idx.shape[1]
|
||||
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
||||
_, _, c = unm.shape
|
||||
|
||||
src = dst.gather(dim=-2, index=dst_idx.expand(B, r, c))
|
||||
|
||||
# Combine back to the original shape
|
||||
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
|
||||
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
|
||||
out.scatter_(dim=-2, index=a_idx.expand(B, a_idx.shape[1], 1).gather(dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
|
||||
out.scatter_(dim=-2, index=a_idx.expand(B, a_idx.shape[1], 1).gather(dim=1, index=src_idx).expand(B, r, c), src=src)
|
||||
|
||||
return out
|
||||
|
||||
return merge, unmerge
|
||||
|
||||
|
||||
def get_functions(x, ratio, original_shape):
|
||||
b, c, original_h, original_w = original_shape
|
||||
original_tokens = original_h * original_w
|
||||
downsample = int(math.sqrt(original_tokens // x.shape[1]))
|
||||
stride_x = 2
|
||||
stride_y = 2
|
||||
max_downsample = 1
|
||||
|
||||
if downsample <= max_downsample:
|
||||
w = original_w // downsample
|
||||
h = original_h // downsample
|
||||
r = int(x.shape[1] * ratio)
|
||||
no_rand = False
|
||||
m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand)
|
||||
return m, u
|
||||
|
||||
nothing = lambda y: y
|
||||
return nothing, nothing
|
||||
@ -26,7 +26,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns predicted noise
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None):
|
||||
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
|
||||
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
@ -35,6 +35,10 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
if 'strength' in cond[1]:
|
||||
strength = cond[1]['strength']
|
||||
|
||||
adm_cond = None
|
||||
if 'adm' in cond[1]:
|
||||
adm_cond = cond[1]['adm']
|
||||
|
||||
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
mult = torch.ones_like(input_x) * strength
|
||||
|
||||
@ -60,6 +64,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
cropped.append(cr)
|
||||
conditionning['c_concat'] = torch.cat(cropped, dim=1)
|
||||
|
||||
if adm_cond is not None:
|
||||
conditionning['c_adm'] = adm_cond
|
||||
|
||||
control = None
|
||||
if 'control' in cond[1]:
|
||||
control = cond[1]['control']
|
||||
@ -76,6 +83,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
if 'c_concat' in c1:
|
||||
if c1['c_concat'].shape != c2['c_concat'].shape:
|
||||
return False
|
||||
if 'c_adm' in c1:
|
||||
if c1['c_adm'].shape != c2['c_adm'].shape:
|
||||
return False
|
||||
return True
|
||||
|
||||
def can_concat_cond(c1, c2):
|
||||
@ -92,19 +102,24 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
def cond_cat(c_list):
|
||||
c_crossattn = []
|
||||
c_concat = []
|
||||
c_adm = []
|
||||
for x in c_list:
|
||||
if 'c_crossattn' in x:
|
||||
c_crossattn.append(x['c_crossattn'])
|
||||
if 'c_concat' in x:
|
||||
c_concat.append(x['c_concat'])
|
||||
if 'c_adm' in x:
|
||||
c_adm.append(x['c_adm'])
|
||||
out = {}
|
||||
if len(c_crossattn) > 0:
|
||||
out['c_crossattn'] = [torch.cat(c_crossattn)]
|
||||
if len(c_concat) > 0:
|
||||
out['c_concat'] = [torch.cat(c_concat)]
|
||||
if len(c_adm) > 0:
|
||||
out['c_adm'] = torch.cat(c_adm)
|
||||
return out
|
||||
|
||||
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in):
|
||||
def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
|
||||
out_cond = torch.zeros_like(x_in)
|
||||
out_count = torch.ones_like(x_in)/100000.0
|
||||
|
||||
@ -169,6 +184,9 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
if control is not None:
|
||||
c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
|
||||
|
||||
if 'transformer_options' in model_options:
|
||||
c['transformer_options'] = model_options['transformer_options']
|
||||
|
||||
output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
|
||||
del input_x
|
||||
|
||||
@ -192,7 +210,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
||||
|
||||
|
||||
max_total_area = model_management.maximum_batch_area()
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat)
|
||||
cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
|
||||
@ -209,8 +227,8 @@ class CFGNoisePredictor(torch.nn.Module):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.alphas_cumprod = model.alphas_cumprod
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat)
|
||||
def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
|
||||
out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
|
||||
return out
|
||||
|
||||
|
||||
@ -218,11 +236,11 @@ class KSamplerX0Inpaint(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None):
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
|
||||
if denoise_mask is not None:
|
||||
latent_mask = 1. - denoise_mask
|
||||
x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat)
|
||||
out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
|
||||
if denoise_mask is not None:
|
||||
out *= denoise_mask
|
||||
|
||||
@ -324,13 +342,37 @@ def apply_control_net_to_equal_area(conds, uncond):
|
||||
n['control'] = cond_cnets[x]
|
||||
uncond[temp[1]] = [o[0], n]
|
||||
|
||||
def encode_adm(noise_augmentor, conds, batch_size, device):
|
||||
for t in range(len(conds)):
|
||||
x = conds[t]
|
||||
if 'adm' in x[1]:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
adm_in = x[1]["adm"]
|
||||
for adm_c in adm_in:
|
||||
adm_cond = adm_c[0].image_embeds
|
||||
weight = adm_c[1]
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([0], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: Apply Noise to Embedding Mix
|
||||
else:
|
||||
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
|
||||
x[1] = x[1].copy()
|
||||
x[1]["adm"] = torch.cat([adm_out] * batch_size)
|
||||
|
||||
return conds
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
|
||||
SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
|
||||
"dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
|
||||
|
||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
|
||||
def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
|
||||
self.model = model
|
||||
self.model_denoise = CFGNoisePredictor(self.model)
|
||||
if self.model.parameterization == "v":
|
||||
@ -350,6 +392,7 @@ class KSampler:
|
||||
self.sigma_max=float(self.model_wrap.sigma_max)
|
||||
self.set_steps(steps, denoise)
|
||||
self.denoise = denoise
|
||||
self.model_options = model_options
|
||||
|
||||
def _calculate_sigmas(self, steps):
|
||||
sigmas = None
|
||||
@ -418,10 +461,14 @@ class KSampler:
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg}
|
||||
if hasattr(self.model, 'noise_augmentor'): #unclip
|
||||
positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device)
|
||||
negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device)
|
||||
|
||||
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
|
||||
|
||||
cond_concat = None
|
||||
if hasattr(self.model, 'concat_keys'):
|
||||
if hasattr(self.model, 'concat_keys'): #inpaint
|
||||
cond_concat = []
|
||||
for ck in self.model.concat_keys:
|
||||
if denoise_mask is not None:
|
||||
@ -467,7 +514,7 @@ class KSampler:
|
||||
x_T=z_enc,
|
||||
x0=latent_image,
|
||||
denoise_function=sampling_function,
|
||||
cond_concat=cond_concat,
|
||||
extra_args=extra_args,
|
||||
mask=noise_mask,
|
||||
to_zero=sigmas[-1]==0,
|
||||
end_step=sigmas.shape[0] - 1)
|
||||
|
||||
66
comfy/sd.py
66
comfy/sd.py
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
import contextlib
|
||||
import copy
|
||||
|
||||
import sd1_clip
|
||||
import sd2_clip
|
||||
@ -11,6 +12,7 @@ from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
from . import utils
|
||||
from . import clip_vision
|
||||
|
||||
def load_torch_file(ckpt):
|
||||
if ckpt.lower().endswith(".safetensors"):
|
||||
@ -52,6 +54,8 @@ def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
|
||||
if x in sd:
|
||||
sd[keys_to_replace[x]] = sd.pop(x)
|
||||
|
||||
sd = utils.transformers_convert(sd, "cond_stage_model.model", "cond_stage_model.transformer.text_model", 24)
|
||||
|
||||
resblock_to_replace = {
|
||||
"ln_1": "layer_norm1",
|
||||
"ln_2": "layer_norm2",
|
||||
@ -122,7 +126,7 @@ LORA_UNET_MAP_RESNET = {
|
||||
}
|
||||
|
||||
def load_lora(path, to_load):
|
||||
lora = load_torch_file(path)
|
||||
lora = utils.load_torch_file(path)
|
||||
patch_dict = {}
|
||||
loaded_keys = set()
|
||||
for x in to_load:
|
||||
@ -274,12 +278,20 @@ class ModelPatcher:
|
||||
self.model = model
|
||||
self.patches = []
|
||||
self.backup = {}
|
||||
self.model_options = {"transformer_options":{}}
|
||||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model)
|
||||
n.patches = self.patches[:]
|
||||
n.model_options = copy.deepcopy(self.model_options)
|
||||
return n
|
||||
|
||||
def set_model_tomesd(self, ratio):
|
||||
self.model_options["transformer_options"]["tomesd"] = {"ratio": ratio}
|
||||
|
||||
def model_dtype(self):
|
||||
return self.model.diffusion_model.dtype
|
||||
|
||||
def add_patches(self, patches, strength=1.0, block_weights={}):
|
||||
p = {}
|
||||
model_sd = self.model.state_dict()
|
||||
@ -305,7 +317,6 @@ class ModelPatcher:
|
||||
for k in p:
|
||||
v = p[k][1]
|
||||
key = k
|
||||
|
||||
if key not in model_sd:
|
||||
print("could not patch. key doesn't exist in model:", k)
|
||||
continue
|
||||
@ -601,7 +612,7 @@ class ControlNet:
|
||||
return out
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = load_torch_file(ckpt_path)
|
||||
controlnet_data = utils.load_torch_file(ckpt_path)
|
||||
pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
|
||||
pth = False
|
||||
sd2 = False
|
||||
@ -795,7 +806,7 @@ class StyleModel:
|
||||
|
||||
|
||||
def load_style_model(ckpt_path):
|
||||
model_data = load_torch_file(ckpt_path)
|
||||
model_data = utils.load_torch_file(ckpt_path)
|
||||
keys = model_data.keys()
|
||||
if "style_embedding" in keys:
|
||||
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
|
||||
@ -806,7 +817,7 @@ def load_style_model(ckpt_path):
|
||||
|
||||
|
||||
def load_clip(ckpt_path, embedding_directory=None):
|
||||
clip_data = load_torch_file(ckpt_path)
|
||||
clip_data = utils.load_torch_file(ckpt_path)
|
||||
config = {}
|
||||
if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
|
||||
config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
|
||||
@ -849,7 +860,7 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config["model"])
|
||||
sd = load_torch_file(ckpt_path)
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
|
||||
if fp16:
|
||||
@ -858,10 +869,11 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
sd = load_torch_file(ckpt_path)
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
|
||||
sd = utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
clip = None
|
||||
clipvision = None
|
||||
vae = None
|
||||
|
||||
fp16 = model_management.should_use_fp16()
|
||||
@ -886,6 +898,29 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e
|
||||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
clipvision_key = "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight"
|
||||
noise_aug_config = None
|
||||
if clipvision_key in sd_keys:
|
||||
size = sd[clipvision_key].shape[1]
|
||||
|
||||
if output_clipvision:
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd)
|
||||
|
||||
noise_aug_key = "noise_augmentor.betas"
|
||||
if noise_aug_key in sd_keys:
|
||||
noise_aug_config = {}
|
||||
params = {}
|
||||
noise_schedule_config = {}
|
||||
noise_schedule_config["timesteps"] = sd[noise_aug_key].shape[0]
|
||||
noise_schedule_config["beta_schedule"] = "squaredcos_cap_v2"
|
||||
params["noise_schedule_config"] = noise_schedule_config
|
||||
noise_aug_config['target'] = "ldm.modules.encoders.noise_aug_modules.CLIPEmbeddingNoiseAugmentation"
|
||||
if size == 1280: #h
|
||||
params["timestep_dim"] = 1024
|
||||
elif size == 1024: #l
|
||||
params["timestep_dim"] = 768
|
||||
noise_aug_config['params'] = params
|
||||
|
||||
sd_config = {
|
||||
"linear_start": 0.00085,
|
||||
"linear_end": 0.012,
|
||||
@ -934,7 +969,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e
|
||||
sd_config["unet_config"] = {"target": "ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
|
||||
model_config = {"target": "ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
|
||||
|
||||
if unet_config["in_channels"] > 4: #inpainting model
|
||||
if noise_aug_config is not None: #SD2.x unclip model
|
||||
sd_config["noise_aug_config"] = noise_aug_config
|
||||
sd_config["image_size"] = 96
|
||||
sd_config["embedding_dropout"] = 0.25
|
||||
sd_config["conditioning_key"] = 'crossattn-adm'
|
||||
model_config["target"] = "ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
|
||||
elif unet_config["in_channels"] > 4: #inpainting model
|
||||
sd_config["conditioning_key"] = "hybrid"
|
||||
sd_config["finetune_keys"] = None
|
||||
model_config["target"] = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
||||
@ -946,6 +987,11 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e
|
||||
else:
|
||||
unet_config["num_heads"] = 8 #SD1.x
|
||||
|
||||
unclip = 'model.diffusion_model.label_emb.0.0.weight'
|
||||
if unclip in sd_keys:
|
||||
unet_config["num_classes"] = "sequential"
|
||||
unet_config["adm_in_channels"] = sd[unclip].shape[1]
|
||||
|
||||
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
|
||||
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
|
||||
out = sd[k]
|
||||
@ -958,4 +1004,4 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, e
|
||||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
return (ModelPatcher(model), clip, vae, clipvision)
|
||||
|
||||
@ -1,5 +1,47 @@
|
||||
import torch
|
||||
|
||||
def load_torch_file(ckpt):
|
||||
if ckpt.lower().endswith(".safetensors"):
|
||||
import safetensors.torch
|
||||
sd = safetensors.torch.load_file(ckpt, device="cpu")
|
||||
else:
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
sd = pl_sd
|
||||
return sd
|
||||
|
||||
def transformers_convert(sd, prefix_from, prefix_to, number):
|
||||
resblock_to_replace = {
|
||||
"ln_1": "layer_norm1",
|
||||
"ln_2": "layer_norm2",
|
||||
"mlp.c_fc": "mlp.fc1",
|
||||
"mlp.c_proj": "mlp.fc2",
|
||||
"attn.out_proj": "self_attn.out_proj",
|
||||
}
|
||||
|
||||
for resblock in range(number):
|
||||
for x in resblock_to_replace:
|
||||
for y in ["weight", "bias"]:
|
||||
k = "{}.transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
|
||||
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
|
||||
if k in sd:
|
||||
sd[k_to] = sd.pop(k)
|
||||
|
||||
for y in ["weight", "bias"]:
|
||||
k_from = "{}.transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
|
||||
if k_from in sd:
|
||||
weights = sd.pop(k_from)
|
||||
shape_from = weights.shape[0] // 3
|
||||
for x in range(3):
|
||||
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
|
||||
k_to = "{}.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
|
||||
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
|
||||
return sd
|
||||
|
||||
def common_upscale(samples, width, height, upscale_method, crop):
|
||||
if crop == "center":
|
||||
old_width = samples.shape[3]
|
||||
|
||||
@ -1,32 +0,0 @@
|
||||
from transformers import CLIPVisionModel, CLIPVisionConfig, CLIPImageProcessor
|
||||
from comfy.sd import load_torch_file
|
||||
import os
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self):
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config.json")
|
||||
config = CLIPVisionConfig.from_json_file(json_config)
|
||||
self.model = CLIPVisionModel(config)
|
||||
self.processor = CLIPImageProcessor(crop_size=224,
|
||||
do_center_crop=True,
|
||||
do_convert_rgb=True,
|
||||
do_normalize=True,
|
||||
do_resize=True,
|
||||
image_mean=[ 0.48145466,0.4578275,0.40821073],
|
||||
image_std=[0.26862954,0.26130258,0.27577711],
|
||||
resample=3, #bicubic
|
||||
size=224)
|
||||
|
||||
def load_sd(self, sd):
|
||||
self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def encode_image(self, image):
|
||||
inputs = self.processor(images=[image[0]], return_tensors="pt")
|
||||
outputs = self.model(**inputs)
|
||||
return outputs
|
||||
|
||||
def load(ckpt_path):
|
||||
clip_data = load_torch_file(ckpt_path)
|
||||
clip = ClipVisionModel()
|
||||
clip.load_sd(clip_data)
|
||||
return clip
|
||||
@ -1,6 +1,5 @@
|
||||
import os
|
||||
from comfy_extras.chainner_models import model_loading
|
||||
from comfy.sd import load_torch_file
|
||||
import model_management
|
||||
import torch
|
||||
import comfy.utils
|
||||
@ -18,7 +17,7 @@ class UpscaleModelLoader:
|
||||
|
||||
def load_model(self, model_name):
|
||||
model_path = folder_paths.get_full_path("upscale_models", model_name)
|
||||
sd = load_torch_file(model_path)
|
||||
sd = comfy.utils.load_torch_file(model_path)
|
||||
out = model_loading.load_state_dict(sd).eval()
|
||||
return (out, )
|
||||
|
||||
|
||||
@ -11,6 +11,8 @@ class Example:
|
||||
----------
|
||||
RETURN_TYPES (`tuple`):
|
||||
The type of each element in the output tulple.
|
||||
RETURN_NAMES (`tuple`):
|
||||
Optional: The name of each output in the output tulple.
|
||||
FUNCTION (`str`):
|
||||
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
||||
OUTPUT_NODE ([`bool`]):
|
||||
@ -61,6 +63,8 @@ class Example:
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
#RETURN_NAMES = ("image_output_name",)
|
||||
|
||||
FUNCTION = "test"
|
||||
|
||||
#OUTPUT_NODE = False
|
||||
|
||||
9
main.py
9
main.py
@ -11,9 +11,14 @@ if os.name == "nt":
|
||||
|
||||
if __name__ == "__main__":
|
||||
if '--help' in sys.argv:
|
||||
print()
|
||||
print("Valid Command line Arguments:")
|
||||
print("\t--listen [ip]\t\t\tListen on ip or 0.0.0.0 if none given so the UI can be accessed from other computers.")
|
||||
print("\t--port 8188\t\t\tSet the listen port.")
|
||||
print()
|
||||
print("\t--extra-model-paths-config file.yaml\tload an extra_model_paths.yaml file.")
|
||||
print()
|
||||
print()
|
||||
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n")
|
||||
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.")
|
||||
print("\t--use-pytorch-cross-attention\tUse the new pytorch 2.0 cross attention function.")
|
||||
@ -40,6 +45,7 @@ if __name__ == "__main__":
|
||||
except:
|
||||
pass
|
||||
|
||||
from nodes import init_custom_nodes
|
||||
import execution
|
||||
import server
|
||||
import folder_paths
|
||||
@ -98,6 +104,8 @@ if __name__ == "__main__":
|
||||
server = server.PromptServer(loop)
|
||||
q = execution.PromptQueue(server)
|
||||
|
||||
init_custom_nodes()
|
||||
server.add_routes()
|
||||
hijack_progress(server)
|
||||
|
||||
threading.Thread(target=prompt_worker, daemon=True, args=(q,server,)).start()
|
||||
@ -113,7 +121,6 @@ if __name__ == "__main__":
|
||||
except:
|
||||
address = '127.0.0.1'
|
||||
|
||||
|
||||
dont_print = False
|
||||
if '--dont-print-server' in sys.argv:
|
||||
dont_print = True
|
||||
|
||||
74
nodes.py
74
nodes.py
@ -18,7 +18,7 @@ import comfy.samplers
|
||||
import comfy.sd
|
||||
import comfy.utils
|
||||
|
||||
import comfy_extras.clip_vision
|
||||
import comfy.clip_vision
|
||||
|
||||
import model_management
|
||||
import importlib
|
||||
@ -219,6 +219,21 @@ class CheckpointLoaderSimple:
|
||||
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return out
|
||||
|
||||
class unCLIPCheckpointLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
|
||||
FUNCTION = "load_checkpoint"
|
||||
|
||||
CATEGORY = "_for_testing/unclip"
|
||||
|
||||
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
||||
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
||||
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return out
|
||||
|
||||
class CLIPSetLastLayer:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -330,6 +345,22 @@ class LoraLoaderBlockWeights:
|
||||
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip, block_weights)
|
||||
return (model_lora, clip_lora)
|
||||
|
||||
class TomePatchModel:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
def patch(self, model, ratio):
|
||||
m = model.clone()
|
||||
m.set_model_tomesd(ratio)
|
||||
return (m, )
|
||||
|
||||
class VAELoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -430,7 +461,7 @@ class CLIPVisionLoader:
|
||||
|
||||
def load_clip(self, clip_name):
|
||||
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
|
||||
clip_vision = comfy_extras.clip_vision.load(clip_path)
|
||||
clip_vision = comfy.clip_vision.load(clip_path)
|
||||
return (clip_vision,)
|
||||
|
||||
class CLIPVisionEncode:
|
||||
@ -442,7 +473,7 @@ class CLIPVisionEncode:
|
||||
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/style_model"
|
||||
CATEGORY = "conditioning"
|
||||
|
||||
def encode(self, clip_vision, image):
|
||||
output = clip_vision.encode_image(image)
|
||||
@ -484,6 +515,32 @@ class StyleModelApply:
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
class unCLIPConditioning:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning": ("CONDITIONING", ),
|
||||
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "apply_adm"
|
||||
|
||||
CATEGORY = "_for_testing/unclip"
|
||||
|
||||
def apply_adm(self, conditioning, clip_vision_output, strength):
|
||||
c = []
|
||||
for t in conditioning:
|
||||
o = t[1].copy()
|
||||
x = (clip_vision_output, strength)
|
||||
if "adm" in o:
|
||||
o["adm"] = o["adm"][:] + [x]
|
||||
else:
|
||||
o["adm"] = [x]
|
||||
n = [t[0], o]
|
||||
c.append(n)
|
||||
return (c, )
|
||||
|
||||
|
||||
class EmptyLatentImage:
|
||||
def __init__(self, device="cpu"):
|
||||
self.device = device
|
||||
@ -722,7 +779,7 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
||||
model_management.load_controlnet_gpu(control_net_models)
|
||||
|
||||
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
|
||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||
else:
|
||||
#other samplers
|
||||
pass
|
||||
@ -1086,6 +1143,7 @@ NODE_CLASS_MAPPINGS = {
|
||||
"CLIPLoader": CLIPLoader,
|
||||
"CLIPVisionEncode": CLIPVisionEncode,
|
||||
"StyleModelApply": StyleModelApply,
|
||||
"unCLIPConditioning": unCLIPConditioning,
|
||||
"ControlNetApply": ControlNetApply,
|
||||
"ControlNetLoader": ControlNetLoader,
|
||||
"DiffControlNetLoader": DiffControlNetLoader,
|
||||
@ -1093,6 +1151,8 @@ NODE_CLASS_MAPPINGS = {
|
||||
"CLIPVisionLoader": CLIPVisionLoader,
|
||||
"VAEDecodeTiled": VAEDecodeTiled,
|
||||
"VAEEncodeTiled": VAEEncodeTiled,
|
||||
"TomePatchModel": TomePatchModel,
|
||||
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
||||
}
|
||||
|
||||
def load_custom_node(module_path):
|
||||
@ -1127,6 +1187,6 @@ def load_custom_nodes():
|
||||
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
||||
load_custom_node(module_path)
|
||||
|
||||
load_custom_nodes()
|
||||
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
|
||||
def init_custom_nodes():
|
||||
load_custom_nodes()
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
|
||||
@ -42,6 +42,7 @@ class PromptServer():
|
||||
self.web_root = os.path.join(os.path.dirname(
|
||||
os.path.realpath(__file__)), "web")
|
||||
routes = web.RouteTableDef()
|
||||
self.routes = routes
|
||||
self.last_node_id = None
|
||||
self.client_id = None
|
||||
|
||||
@ -239,8 +240,9 @@ class PromptServer():
|
||||
self.prompt_queue.delete_history_item(id_to_delete)
|
||||
|
||||
return web.Response(status=200)
|
||||
|
||||
self.app.add_routes(routes)
|
||||
|
||||
def add_routes(self):
|
||||
self.app.add_routes(self.routes)
|
||||
self.app.add_routes([
|
||||
web.static('/', self.web_root),
|
||||
])
|
||||
|
||||
@ -43,8 +43,15 @@ app.registerExtension({
|
||||
const node = app.graph.getNodeById(link.origin_id);
|
||||
const type = node.constructor.type;
|
||||
if (type === "Reroute") {
|
||||
if (node === this) {
|
||||
// We've found a circle
|
||||
currentNode.disconnectInput(link.target_slot);
|
||||
currentNode = null;
|
||||
}
|
||||
else {
|
||||
// Move the previous node
|
||||
currentNode = node;
|
||||
currentNode = node;
|
||||
}
|
||||
} else {
|
||||
// We've found the end
|
||||
inputNode = currentNode;
|
||||
|
||||
21
web/extensions/core/slotDefaults.js
Normal file
21
web/extensions/core/slotDefaults.js
Normal file
@ -0,0 +1,21 @@
|
||||
import { app } from "/scripts/app.js";
|
||||
|
||||
// Adds defaults for quickly adding nodes with middle click on the input/output
|
||||
|
||||
app.registerExtension({
|
||||
name: "Comfy.SlotDefaults",
|
||||
init() {
|
||||
LiteGraph.middle_click_slot_add_default_node = true;
|
||||
LiteGraph.slot_types_default_in = {
|
||||
MODEL: "CheckpointLoaderSimple",
|
||||
LATENT: "EmptyLatentImage",
|
||||
VAE: "VAELoader",
|
||||
};
|
||||
|
||||
LiteGraph.slot_types_default_out = {
|
||||
LATENT: "VAEDecode",
|
||||
IMAGE: "SaveImage",
|
||||
CLIP: "CLIPTextEncode",
|
||||
};
|
||||
},
|
||||
});
|
||||
89
web/extensions/core/snapToGrid.js
Normal file
89
web/extensions/core/snapToGrid.js
Normal file
@ -0,0 +1,89 @@
|
||||
import { app } from "/scripts/app.js";
|
||||
|
||||
// Shift + drag/resize to snap to grid
|
||||
|
||||
app.registerExtension({
|
||||
name: "Comfy.SnapToGrid",
|
||||
init() {
|
||||
// Add setting to control grid size
|
||||
app.ui.settings.addSetting({
|
||||
id: "Comfy.SnapToGrid.GridSize",
|
||||
name: "Grid Size",
|
||||
type: "number",
|
||||
attrs: {
|
||||
min: 1,
|
||||
max: 500,
|
||||
},
|
||||
tooltip:
|
||||
"When dragging and resizing nodes while holding shift they will be aligned to the grid, this controls the size of that grid.",
|
||||
defaultValue: LiteGraph.CANVAS_GRID_SIZE,
|
||||
onChange(value) {
|
||||
LiteGraph.CANVAS_GRID_SIZE = +value;
|
||||
},
|
||||
});
|
||||
|
||||
// After moving a node, if the shift key is down align it to grid
|
||||
const onNodeMoved = app.canvas.onNodeMoved;
|
||||
app.canvas.onNodeMoved = function (node) {
|
||||
const r = onNodeMoved?.apply(this, arguments);
|
||||
|
||||
if (app.shiftDown) {
|
||||
// Ensure all selected nodes are realigned
|
||||
for (const id in this.selected_nodes) {
|
||||
this.selected_nodes[id].alignToGrid();
|
||||
}
|
||||
}
|
||||
|
||||
return r;
|
||||
};
|
||||
|
||||
// When a node is added, add a resize handler to it so we can fix align the size with the grid
|
||||
const onNodeAdded = app.graph.onNodeAdded;
|
||||
app.graph.onNodeAdded = function (node) {
|
||||
const onResize = node.onResize;
|
||||
node.onResize = function () {
|
||||
if (app.shiftDown) {
|
||||
const w = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[0] / LiteGraph.CANVAS_GRID_SIZE);
|
||||
const h = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.size[1] / LiteGraph.CANVAS_GRID_SIZE);
|
||||
node.size[0] = w;
|
||||
node.size[1] = h;
|
||||
}
|
||||
return onResize?.apply(this, arguments);
|
||||
};
|
||||
return onNodeAdded?.apply(this, arguments);
|
||||
};
|
||||
|
||||
// Draw a preview of where the node will go if holding shift and the node is selected
|
||||
const origDrawNode = LGraphCanvas.prototype.drawNode;
|
||||
LGraphCanvas.prototype.drawNode = function (node, ctx) {
|
||||
if (app.shiftDown && this.node_dragged && node.id in this.selected_nodes) {
|
||||
const x = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[0] / LiteGraph.CANVAS_GRID_SIZE);
|
||||
const y = LiteGraph.CANVAS_GRID_SIZE * Math.round(node.pos[1] / LiteGraph.CANVAS_GRID_SIZE);
|
||||
|
||||
const shiftX = x - node.pos[0];
|
||||
let shiftY = y - node.pos[1];
|
||||
|
||||
let w, h;
|
||||
if (node.flags.collapsed) {
|
||||
w = node._collapsed_width;
|
||||
h = LiteGraph.NODE_TITLE_HEIGHT;
|
||||
shiftY -= LiteGraph.NODE_TITLE_HEIGHT;
|
||||
} else {
|
||||
w = node.size[0];
|
||||
h = node.size[1];
|
||||
let titleMode = node.constructor.title_mode;
|
||||
if (titleMode !== LiteGraph.TRANSPARENT_TITLE && titleMode !== LiteGraph.NO_TITLE) {
|
||||
h += LiteGraph.NODE_TITLE_HEIGHT;
|
||||
shiftY -= LiteGraph.NODE_TITLE_HEIGHT;
|
||||
}
|
||||
}
|
||||
const f = ctx.fillStyle;
|
||||
ctx.fillStyle = "rgba(100, 100, 100, 0.5)";
|
||||
ctx.fillRect(shiftX, shiftY, w, h);
|
||||
ctx.fillStyle = f;
|
||||
}
|
||||
|
||||
return origDrawNode.apply(this, arguments);
|
||||
};
|
||||
},
|
||||
});
|
||||
@ -20,7 +20,7 @@ function hideWidget(node, widget, suffix = "") {
|
||||
if (link == null) {
|
||||
return undefined;
|
||||
}
|
||||
return widget.value;
|
||||
return widget.origSerializeValue ? widget.origSerializeValue() : widget.value;
|
||||
};
|
||||
|
||||
// Hide any linked widgets, e.g. seed+randomize
|
||||
@ -101,7 +101,7 @@ app.registerExtension({
|
||||
callback: () => convertToWidget(this, w),
|
||||
});
|
||||
} else {
|
||||
const config = nodeData?.input?.required[w.name] || [w.type, w.options || {}];
|
||||
const config = nodeData?.input?.required[w.name] || nodeData?.input?.optional?.[w.name] || [w.type, w.options || {}];
|
||||
if (isConvertableWidget(w, config)) {
|
||||
toInput.push({
|
||||
content: `Convert ${w.name} to input`,
|
||||
|
||||
@ -5,10 +5,20 @@ import { defaultGraph } from "./defaultGraph.js";
|
||||
import { getPngMetadata, importA1111 } from "./pnginfo.js";
|
||||
|
||||
class ComfyApp {
|
||||
/**
|
||||
* List of {number, batchCount} entries to queue
|
||||
*/
|
||||
#queueItems = [];
|
||||
/**
|
||||
* If the queue is currently being processed
|
||||
*/
|
||||
#processingQueue = false;
|
||||
|
||||
constructor() {
|
||||
this.ui = new ComfyUI(this);
|
||||
this.extensions = [];
|
||||
this.nodeOutputs = {};
|
||||
this.shiftDown = false;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -628,11 +638,16 @@ class ComfyApp {
|
||||
|
||||
#addKeyboardHandler() {
|
||||
window.addEventListener("keydown", (e) => {
|
||||
this.shiftDown = e.shiftKey;
|
||||
|
||||
// Queue prompt using ctrl or command + enter
|
||||
if ((e.ctrlKey || e.metaKey) && (e.key === "Enter" || e.keyCode === 13 || e.keyCode === 10)) {
|
||||
this.queuePrompt(e.shiftKey ? -1 : 0);
|
||||
}
|
||||
});
|
||||
window.addEventListener("keyup", (e) => {
|
||||
this.shiftDown = e.shiftKey;
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
@ -667,6 +682,9 @@ class ComfyApp {
|
||||
const canvas = (this.canvas = new LGraphCanvas(canvasEl, this.graph));
|
||||
this.ctx = canvasEl.getContext("2d");
|
||||
|
||||
LiteGraph.release_link_on_empty_shows_menu = true;
|
||||
LiteGraph.alt_drag_do_clone_nodes = true;
|
||||
|
||||
this.graph.start();
|
||||
|
||||
function resizeCanvas() {
|
||||
@ -802,7 +820,7 @@ class ComfyApp {
|
||||
this.clean();
|
||||
|
||||
if (!graphData) {
|
||||
graphData = defaultGraph;
|
||||
graphData = structuredClone(defaultGraph);
|
||||
}
|
||||
|
||||
// Patch T2IAdapterLoader to ControlNetLoader since they are the same node now
|
||||
@ -915,31 +933,47 @@ class ComfyApp {
|
||||
}
|
||||
|
||||
async queuePrompt(number, batchCount = 1) {
|
||||
for (let i = 0; i < batchCount; i++) {
|
||||
const p = await this.graphToPrompt();
|
||||
this.#queueItems.push({ number, batchCount });
|
||||
|
||||
try {
|
||||
await api.queuePrompt(number, p);
|
||||
} catch (error) {
|
||||
this.ui.dialog.show(error.response || error.toString());
|
||||
return;
|
||||
}
|
||||
// Only have one action process the items so each one gets a unique seed correctly
|
||||
if (this.#processingQueue) {
|
||||
return;
|
||||
}
|
||||
|
||||
this.#processingQueue = true;
|
||||
try {
|
||||
while (this.#queueItems.length) {
|
||||
({ number, batchCount } = this.#queueItems.pop());
|
||||
|
||||
for (const n of p.workflow.nodes) {
|
||||
const node = graph.getNodeById(n.id);
|
||||
if (node.widgets) {
|
||||
for (const widget of node.widgets) {
|
||||
// Allow widgets to run callbacks after a prompt has been queued
|
||||
// e.g. random seed after every gen
|
||||
if (widget.afterQueued) {
|
||||
widget.afterQueued();
|
||||
for (let i = 0; i < batchCount; i++) {
|
||||
const p = await this.graphToPrompt();
|
||||
|
||||
try {
|
||||
await api.queuePrompt(number, p);
|
||||
} catch (error) {
|
||||
this.ui.dialog.show(error.response || error.toString());
|
||||
break;
|
||||
}
|
||||
|
||||
for (const n of p.workflow.nodes) {
|
||||
const node = graph.getNodeById(n.id);
|
||||
if (node.widgets) {
|
||||
for (const widget of node.widgets) {
|
||||
// Allow widgets to run callbacks after a prompt has been queued
|
||||
// e.g. random seed after every gen
|
||||
if (widget.afterQueued) {
|
||||
widget.afterQueued();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
this.canvas.draw(true, true);
|
||||
await this.ui.queue.update();
|
||||
}
|
||||
}
|
||||
|
||||
this.canvas.draw(true, true);
|
||||
await this.ui.queue.update();
|
||||
} finally {
|
||||
this.#processingQueue = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -35,21 +35,87 @@ export function $el(tag, propsOrChildren, children) {
|
||||
return element;
|
||||
}
|
||||
|
||||
function dragElement(dragEl) {
|
||||
function dragElement(dragEl, settings) {
|
||||
var posDiffX = 0,
|
||||
posDiffY = 0,
|
||||
posStartX = 0,
|
||||
posStartY = 0,
|
||||
newPosX = 0,
|
||||
newPosY = 0;
|
||||
if (dragEl.getElementsByClassName('drag-handle')[0]) {
|
||||
if (dragEl.getElementsByClassName("drag-handle")[0]) {
|
||||
// if present, the handle is where you move the DIV from:
|
||||
dragEl.getElementsByClassName('drag-handle')[0].onmousedown = dragMouseDown;
|
||||
dragEl.getElementsByClassName("drag-handle")[0].onmousedown = dragMouseDown;
|
||||
} else {
|
||||
// otherwise, move the DIV from anywhere inside the DIV:
|
||||
dragEl.onmousedown = dragMouseDown;
|
||||
}
|
||||
|
||||
// When the element resizes (e.g. view queue) ensure it is still in the windows bounds
|
||||
const resizeObserver = new ResizeObserver(() => {
|
||||
ensureInBounds();
|
||||
}).observe(dragEl);
|
||||
|
||||
function ensureInBounds() {
|
||||
if (dragEl.classList.contains("comfy-menu-manual-pos")) {
|
||||
newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft));
|
||||
newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop));
|
||||
|
||||
positionElement();
|
||||
}
|
||||
}
|
||||
|
||||
function positionElement() {
|
||||
const halfWidth = document.body.clientWidth / 2;
|
||||
const anchorRight = newPosX + dragEl.clientWidth / 2 > halfWidth;
|
||||
|
||||
// set the element's new position:
|
||||
if (anchorRight) {
|
||||
dragEl.style.left = "unset";
|
||||
dragEl.style.right = document.body.clientWidth - newPosX - dragEl.clientWidth + "px";
|
||||
} else {
|
||||
dragEl.style.left = newPosX + "px";
|
||||
dragEl.style.right = "unset";
|
||||
}
|
||||
|
||||
dragEl.style.top = newPosY + "px";
|
||||
dragEl.style.bottom = "unset";
|
||||
|
||||
if (savePos) {
|
||||
localStorage.setItem(
|
||||
"Comfy.MenuPosition",
|
||||
JSON.stringify({
|
||||
x: dragEl.offsetLeft,
|
||||
y: dragEl.offsetTop,
|
||||
})
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
function restorePos() {
|
||||
let pos = localStorage.getItem("Comfy.MenuPosition");
|
||||
if (pos) {
|
||||
pos = JSON.parse(pos);
|
||||
newPosX = pos.x;
|
||||
newPosY = pos.y;
|
||||
positionElement();
|
||||
ensureInBounds();
|
||||
}
|
||||
}
|
||||
|
||||
let savePos = undefined;
|
||||
settings.addSetting({
|
||||
id: "Comfy.MenuPosition",
|
||||
name: "Save menu position",
|
||||
type: "boolean",
|
||||
defaultValue: savePos,
|
||||
onChange(value) {
|
||||
if (savePos === undefined && value) {
|
||||
restorePos();
|
||||
}
|
||||
savePos = value;
|
||||
},
|
||||
});
|
||||
|
||||
function dragMouseDown(e) {
|
||||
e = e || window.event;
|
||||
e.preventDefault();
|
||||
@ -64,18 +130,25 @@ function dragElement(dragEl) {
|
||||
function elementDrag(e) {
|
||||
e = e || window.event;
|
||||
e.preventDefault();
|
||||
|
||||
dragEl.classList.add("comfy-menu-manual-pos");
|
||||
|
||||
// calculate the new cursor position:
|
||||
posDiffX = e.clientX - posStartX;
|
||||
posDiffY = e.clientY - posStartY;
|
||||
posStartX = e.clientX;
|
||||
posStartY = e.clientY;
|
||||
newPosX = Math.min((document.body.clientWidth - dragEl.clientWidth), Math.max(0, (dragEl.offsetLeft + posDiffX)));
|
||||
newPosY = Math.min((document.body.clientHeight - dragEl.clientHeight), Math.max(0, (dragEl.offsetTop + posDiffY)));
|
||||
// set the element's new position:
|
||||
dragEl.style.top = newPosY + "px";
|
||||
dragEl.style.left = newPosX + "px";
|
||||
|
||||
newPosX = Math.min(document.body.clientWidth - dragEl.clientWidth, Math.max(0, dragEl.offsetLeft + posDiffX));
|
||||
newPosY = Math.min(document.body.clientHeight - dragEl.clientHeight, Math.max(0, dragEl.offsetTop + posDiffY));
|
||||
|
||||
positionElement();
|
||||
}
|
||||
|
||||
window.addEventListener("resize", () => {
|
||||
ensureInBounds();
|
||||
});
|
||||
|
||||
function closeDragElement() {
|
||||
// stop moving when mouse button is released:
|
||||
document.onmouseup = null;
|
||||
@ -125,7 +198,7 @@ class ComfySettingsDialog extends ComfyDialog {
|
||||
localStorage[settingId] = JSON.stringify(value);
|
||||
}
|
||||
|
||||
addSetting({ id, name, type, defaultValue, onChange }) {
|
||||
addSetting({ id, name, type, defaultValue, onChange, attrs = {}, tooltip = "", }) {
|
||||
if (!id) {
|
||||
throw new Error("Settings must have an ID");
|
||||
}
|
||||
@ -152,42 +225,72 @@ class ComfySettingsDialog extends ComfyDialog {
|
||||
value = v;
|
||||
};
|
||||
|
||||
let element;
|
||||
|
||||
if (typeof type === "function") {
|
||||
return type(name, setter, value);
|
||||
element = type(name, setter, value, attrs);
|
||||
} else {
|
||||
switch (type) {
|
||||
case "boolean":
|
||||
element = $el("div", [
|
||||
$el("label", { textContent: name || id }, [
|
||||
$el("input", {
|
||||
type: "checkbox",
|
||||
checked: !!value,
|
||||
oninput: (e) => {
|
||||
setter(e.target.checked);
|
||||
},
|
||||
...attrs
|
||||
}),
|
||||
]),
|
||||
]);
|
||||
break;
|
||||
case "number":
|
||||
element = $el("div", [
|
||||
$el("label", { textContent: name || id }, [
|
||||
$el("input", {
|
||||
type,
|
||||
value,
|
||||
oninput: (e) => {
|
||||
setter(e.target.value);
|
||||
},
|
||||
...attrs
|
||||
}),
|
||||
]),
|
||||
]);
|
||||
break;
|
||||
default:
|
||||
console.warn("Unsupported setting type, defaulting to text");
|
||||
element = $el("div", [
|
||||
$el("label", { textContent: name || id }, [
|
||||
$el("input", {
|
||||
value,
|
||||
oninput: (e) => {
|
||||
setter(e.target.value);
|
||||
},
|
||||
...attrs
|
||||
}),
|
||||
]),
|
||||
]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(tooltip) {
|
||||
element.title = tooltip;
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case "boolean":
|
||||
return $el("div", [
|
||||
$el("label", { textContent: name || id }, [
|
||||
$el("input", {
|
||||
type: "checkbox",
|
||||
checked: !!value,
|
||||
oninput: (e) => {
|
||||
setter(e.target.checked);
|
||||
},
|
||||
}),
|
||||
]),
|
||||
]);
|
||||
default:
|
||||
console.warn("Unsupported setting type, defaulting to text");
|
||||
return $el("div", [
|
||||
$el("label", { textContent: name || id }, [
|
||||
$el("input", {
|
||||
value,
|
||||
oninput: (e) => {
|
||||
setter(e.target.value);
|
||||
},
|
||||
}),
|
||||
]),
|
||||
]);
|
||||
}
|
||||
return element;
|
||||
},
|
||||
});
|
||||
}
|
||||
|
||||
show() {
|
||||
super.show();
|
||||
Object.assign(this.textElement.style, {
|
||||
display: "flex",
|
||||
flexDirection: "column",
|
||||
gap: "10px"
|
||||
});
|
||||
this.textElement.replaceChildren(...this.settings.map((s) => s.render()));
|
||||
}
|
||||
}
|
||||
@ -225,10 +328,10 @@ class ComfyList {
|
||||
$el("button", {
|
||||
textContent: "Load",
|
||||
onclick: () => {
|
||||
app.loadGraphData(item.prompt[3].extra_pnginfo.workflow);
|
||||
if (item.outputs) {
|
||||
app.nodeOutputs = item.outputs;
|
||||
}
|
||||
app.loadGraphData(item.prompt[3].extra_pnginfo.workflow);
|
||||
},
|
||||
}),
|
||||
$el("button", {
|
||||
@ -316,34 +419,52 @@ export class ComfyUI {
|
||||
$el("span", { $: (q) => (this.queueSize = q) }),
|
||||
$el("button.comfy-settings-btn", { textContent: "⚙️", onclick: () => this.settings.show() }),
|
||||
]),
|
||||
$el("button.comfy-queue-btn", { textContent: "Queue Prompt", onclick: () => app.queuePrompt(0, this.batchCount) }),
|
||||
$el("button.comfy-queue-btn", {
|
||||
textContent: "Queue Prompt",
|
||||
onclick: () => app.queuePrompt(0, this.batchCount),
|
||||
}),
|
||||
$el("div", {}, [
|
||||
$el("label", { innerHTML: "Extra options"}, [
|
||||
$el("input", { type: "checkbox",
|
||||
onchange: (i) => {
|
||||
document.getElementById('extraOptions').style.display = i.srcElement.checked ? "block" : "none";
|
||||
this.batchCount = i.srcElement.checked ? document.getElementById('batchCountInputRange').value : 1;
|
||||
document.getElementById('autoQueueCheckbox').checked = false;
|
||||
}
|
||||
})
|
||||
])
|
||||
]),
|
||||
$el("div", { id: "extraOptions", style: { width: "100%", display: "none" }}, [
|
||||
$el("label", { innerHTML: "Batch count" }, [
|
||||
$el("input", { id: "batchCountInputNumber", type: "number", value: this.batchCount, min: "1", style: { width: "35%", "margin-left": "0.4em" },
|
||||
oninput: (i) => {
|
||||
this.batchCount = i.target.value;
|
||||
document.getElementById('batchCountInputRange').value = this.batchCount;
|
||||
}
|
||||
$el("label", { innerHTML: "Extra options" }, [
|
||||
$el("input", {
|
||||
type: "checkbox",
|
||||
onchange: (i) => {
|
||||
document.getElementById("extraOptions").style.display = i.srcElement.checked ? "block" : "none";
|
||||
this.batchCount = i.srcElement.checked ? document.getElementById("batchCountInputRange").value : 1;
|
||||
document.getElementById("autoQueueCheckbox").checked = false;
|
||||
},
|
||||
}),
|
||||
$el("input", { id: "batchCountInputRange", type: "range", min: "1", max: "100", value: this.batchCount,
|
||||
]),
|
||||
]),
|
||||
$el("div", { id: "extraOptions", style: { width: "100%", display: "none" } }, [
|
||||
$el("label", { innerHTML: "Batch count" }, [
|
||||
$el("input", {
|
||||
id: "batchCountInputNumber",
|
||||
type: "number",
|
||||
value: this.batchCount,
|
||||
min: "1",
|
||||
style: { width: "35%", "margin-left": "0.4em" },
|
||||
oninput: (i) => {
|
||||
this.batchCount = i.target.value;
|
||||
document.getElementById("batchCountInputRange").value = this.batchCount;
|
||||
},
|
||||
}),
|
||||
$el("input", {
|
||||
id: "batchCountInputRange",
|
||||
type: "range",
|
||||
min: "1",
|
||||
max: "100",
|
||||
value: this.batchCount,
|
||||
oninput: (i) => {
|
||||
this.batchCount = i.srcElement.value;
|
||||
document.getElementById('batchCountInputNumber').value = i.srcElement.value;
|
||||
}
|
||||
document.getElementById("batchCountInputNumber").value = i.srcElement.value;
|
||||
},
|
||||
}),
|
||||
$el("input", {
|
||||
id: "autoQueueCheckbox",
|
||||
type: "checkbox",
|
||||
checked: false,
|
||||
title: "automatically queue prompt when the queue size hits 0",
|
||||
}),
|
||||
$el("input", { id: "autoQueueCheckbox", type: "checkbox", checked: false, title: "automatically queue prompt when the queue size hits 0",
|
||||
})
|
||||
]),
|
||||
]),
|
||||
$el("div.comfy-menu-btns", [
|
||||
@ -395,7 +516,7 @@ export class ComfyUI {
|
||||
$el("button", { textContent: "Load Default", onclick: () => app.loadGraphData() }),
|
||||
]);
|
||||
|
||||
dragElement(this.menuContainer);
|
||||
dragElement(this.menuContainer, this.settings);
|
||||
|
||||
this.setStatus({ exec_info: { queue_remaining: "X" } });
|
||||
}
|
||||
@ -403,10 +524,14 @@ export class ComfyUI {
|
||||
setStatus(status) {
|
||||
this.queueSize.textContent = "Queue size: " + (status ? status.exec_info.queue_remaining : "ERR");
|
||||
if (status) {
|
||||
if (this.lastQueueSize != 0 && status.exec_info.queue_remaining == 0 && document.getElementById('autoQueueCheckbox').checked) {
|
||||
if (
|
||||
this.lastQueueSize != 0 &&
|
||||
status.exec_info.queue_remaining == 0 &&
|
||||
document.getElementById("autoQueueCheckbox").checked
|
||||
) {
|
||||
app.queuePrompt(0, this.batchCount);
|
||||
}
|
||||
this.lastQueueSize = status.exec_info.queue_remaining
|
||||
this.lastQueueSize = status.exec_info.queue_remaining;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user