* mm: default to 0 for NUM_STREAMS
Dont count the compute stream as an offload stream. This makes async
offload accounting easier.
* mm: remove 128MB minimum
This is from a previous offloading system requirement. Remove it to
make behaviour of the loader and partial unloader consistent.
* mp: order the module list by offload expense
Calculate an approximate offloading temporary VRAM cost to offload a
weight and primary order the module load list by that. In the simple
case this is just the same as the module weight, but with Loras, a
weight with a lora consumes considerably more VRAM to do the Lora
application on-the-fly.
This will slightly prioritize lora weights, but is really for
proper VRAM offload accounting.
* mp: Account for the VRAM cost of weight offloading
when checking the VRAM headroom, assume that the weight needs to be
offloaded, and only load if it has space for both the load and offload
* the number of streams.
As the weights are ordered from largest to smallest by offload cost
this is guaranteed to fit in VRAM (tm), as all weights that follow
will be smaller.
Make the partial unload aware of this system as well by saving the
budget for offload VRAM to the model state and accounting accordingly.
Its possible that partial unload increases the size of the largest
offloaded weights, and thus needs to unload a little bit more than
asked to accomodate the bigger temp buffers.
Honor the existing codes floor on model weight loading of 128MB by
having the patcher honor this separately withough regard to offloading.
Otherwise when MM specifies its 128MB minimum, MP will see the biggest
weights, and budget that 128MB to only offload buffer and load nothing
which isnt the intent of these minimums. The same clamp applies in
case of partial offload of the currently loading model.
* init
* update
* Update model.py
* Update model.py
* remove print
* Fix text encoding
* Prevent empty negative prompt
Really doesn't work otherwise
* fp16 works
* I2V
* Update model_base.py
* Update nodes_hunyuan.py
* Better latent rgb factors
* Use the correct sigclip output...
* Support HunyuanVideo1.5 SR model
* whitespaces...
* Proper latent channel count
* SR model fixes
This also still needs timesteps scheduling based on the noise scale, can be used with two samplers too already
* vae_refiner: roll the convolution through temporal
Work in progress.
Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.
* Support HunyuanVideo15 latent resampler
* fix
* Some cleanup
Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
* Proper hyvid15 I2V channels
Co-Authored-By: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
* Fix TokenRefiner for fp16
Otherwise x.sum has infs, just in case only casting if input is fp16, I don't know if necessary.
* Bugfix for the HunyuanVideo15 SR model
* vae_refiner: roll the convolution through temporal II
Roll the convolution through time using 2-latent-frame chunks and a
FIFO queue for the convolution seams.
Added support for encoder, lowered to 1 latent frame to save more
VRAM, made work for Hunyuan Image 3.0 (as code shared).
Fixed names, cleaned up code.
* Allow any number of input frames in VAE.
* Better VAE encode mem estimation.
* Lowvram fix.
* Fix hunyuan image 2.1 refiner.
* Fix mistake.
* Name changes.
* Rename.
* Whitespace.
* Fix.
* Fix.
---------
Co-authored-by: kijai <40791699+kijai@users.noreply.github.com>
Co-authored-by: Rattus <rattus128@gmail.com>
Clean up a bunch of stacked and no-longer-needed tensors on the QWEN
VRAM peak (currently FFN).
With this I go from OOMing at B=37x1328x1328 to being able to
succesfully run B=47 (RTX5090).
The partial unloader path in model re-use flow skips straight to the
actual unload without any check of the patching UUID. This means that
if you do an upscale flow with a model patch on an existing model, it
will not apply your patchings.
Fix by delaying the partial_unload until after the uuid checks. This
is done by making partial_unload a model of partial_load where extra_mem
is -ve.
* ops: dont take an offload stream if you dont need one
* ops: prioritize mem transfer
The async offload streams reason for existence is to transfer from
RAM to GPU. The post processing compute steps are a bonus on the side
stream, but if the compute stream is running a long kernel, it can
stall the side stream, as it wait to type-cast the bias before
transferring the weight. So do a pure xfer of the weight straight up,
then do everything bias, then go back to fix the weight type and do
weight patches.
* execution: Roll the UI cache into the outputs
Currently the UI cache is parallel to the output cache with
expectations of being a content superset of the output cache.
At the same time the UI and output cache are maintained completely
seperately, making it awkward to free the output cache content without
changing the behaviour of the UI cache.
There are two actual users (getters) of the UI cache. The first is
the case of a direct content hit on the output cache when executing a
node. This case is very naturally handled by merging the UI and outputs
cache.
The second case is the history JSON generation at the end of the prompt.
This currently works by asking the cache for all_node_ids and then
pulling the cache contents for those nodes. all_node_ids is the nodes
of the dynamic prompt.
So fold the UI cache into the output cache. The current UI cache setter
now writes to a prompt-scope dict. When the output cache is set, just
get this value from the dict and tuple up with the outputs.
When generating the history, simply iterate prompt-scope dict.
This prepares support for more complex caching strategies (like RAM
pressure caching) where less than 1 workflow will be cached and it
will be desirable to keep the UI cache and output cache in sync.
* sd: Implement RAM getter for VAE
* model_patcher: Implement RAM getter for ModelPatcher
* sd: Implement RAM getter for CLIP
* Implement RAM Pressure cache
Implement a cache sensitive to RAM pressure. When RAM headroom drops
down below a certain threshold, evict RAM-expensive nodes from the
cache.
Models and tensors are measured directly for RAM usage. An OOM score
is then computed based on the RAM usage of the node.
Note the due to indirection through shared objects (like a model
patcher), multiple nodes can account the same RAM as their individual
usage. The intent is this will free chains of nodes particularly
model loaders and associate loras as they all score similar and are
sorted in close to each other.
Has a bias towards unloading model nodes mid flow while being able
to keep results like text encodings and VAE.
* execution: Convert the cache entry to NamedTuple
As commented in review.
Convert this to a named tuple and abstract away the tuple type
completely from graph.py.
* mm: factor out the current stream getter
Make this a reusable function.
* ops: sync the offload stream with the consumption of w&b
This sync is nessacary as pytorch will queue cuda async frees on the
same stream as created to tensor. In the case of async offload, this
will be on the offload stream.
Weights and biases can go out of scope in python which then
triggers the pytorch garbage collector to queue the free operation on
the offload stream possible before the compute stream has used the
weight. This causes a use after free on weight data leading to total
corruption of some workflows.
So sync the offload stream with the compute stream after the weight
has been used so the free has to wait for the weight to be used.
The cast_bias_weight is extended in a backwards compatible way with
the new behaviour opt-in on a defaulted parameter. This handles
custom node packs calling cast_bias_weight and defeatures
async-offload for them (as they do not handle the race).
The pattern is now:
cast_bias_weight(... , offloadable=True) #This might be offloaded
thing(weight, bias, ...)
uncast_bias_weight(...)
* controlnet: adopt new cast_bias_weight synchronization scheme
This is nessacary for safe async weight offloading.
* mm: sync the last stream in the queue, not the next
Currently this peeks ahead to sync the next stream in the queue of
streams with the compute stream. This doesnt allow a lot of
parallelization, as then end result is you can only get one weight load
ahead regardless of how many streams you have.
Rotate the loop logic here to synchronize the end of the queue before
returning the next stream. This allows weights to be loaded ahead of the
compute streams position.
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.
* Updated design using Tensor Subclasses
* Fix FP8 MM
* An actually functional POC
* Remove CK reference and ensure correct compute dtype
* Update unit tests
* ruff lint
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.
* Updated design using Tensor Subclasses
* Fix FP8 MM
* An actually functional POC
* Remove CK reference and ensure correct compute dtype
* Update unit tests
* ruff lint
* Fix missing keys
* Rename quant dtype parameter
* Rename quant dtype parameter
* Fix unittests for CPU build
Same change pattern as 7e8dd275c2
applied to WAN2.2
If this suffers an exception (such as a VRAM oom) it will leave the
encode() and decode() methods which skips the cleanup of the WAN
feature cache. The comfy node cache then ultimately keeps a reference
this object which is in turn reffing large tensors from the failed
execution.
The feature cache is currently setup at a class variable on the
encoder/decoder however, the encode and decode functions always clear
it on both entry and exit of normal execution.
Its likely the design intent is this is usable as a streaming encoder
where the input comes in batches, however the functions as they are
today don't support that.
So simplify by bringing the cache back to local variable, so that if
it does VRAM OOM the cache itself is properly garbage when the
encode()/decode() functions dissappear from the stack.
## Summary
Fixed incorrect type hint syntax in `MotionEncoder_tc.__init__()` parameter list.
## Changes
- Line 647: Changed `num_heads=int` to `num_heads: int`
- This corrects the parameter annotation from a default value assignment to proper type hint syntax
## Details
The parameter was using assignment syntax (`=`) instead of type annotation syntax (`:`), which would incorrectly set the default value to the `int` class itself rather than annotating the expected type.