Support the LTXV 2 model. (#11632)

This commit is contained in:
comfyanonymous 2026-01-04 22:58:59 -08:00 committed by GitHub
parent 38d0493825
commit f2b002372b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
23 changed files with 4214 additions and 185 deletions

View File

@ -407,6 +407,9 @@ class LTXV(LatentFormat):
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
class LTXAV(LTXV):
pass
class HunyuanVideo(LatentFormat):
latent_channels = 16
latent_dimensions = 3

View File

@ -0,0 +1,837 @@
from typing import Tuple
import torch
import torch.nn as nn
from comfy.ldm.lightricks.model import (
CrossAttention,
FeedForward,
AdaLayerNormSingle,
PixArtAlphaTextProjection,
LTXVModel,
)
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
import comfy.ldm.common_dit
class BasicAVTransformerBlock(nn.Module):
def __init__(
self,
v_dim,
a_dim,
v_heads,
a_heads,
vd_head,
ad_head,
v_context_dim=None,
a_context_dim=None,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(
query_dim=v_dim,
heads=v_heads,
dim_head=vd_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.audio_attn1 = CrossAttention(
query_dim=a_dim,
heads=a_heads,
dim_head=ad_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.attn2 = CrossAttention(
query_dim=v_dim,
context_dim=v_context_dim,
heads=v_heads,
dim_head=vd_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.audio_attn2 = CrossAttention(
query_dim=a_dim,
context_dim=a_context_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
# Q: Video, K,V: Audio
self.audio_to_video_attn = CrossAttention(
query_dim=v_dim,
context_dim=a_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
# Q: Audio, K,V: Video
self.video_to_audio_attn = CrossAttention(
query_dim=a_dim,
context_dim=v_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.ff = FeedForward(
v_dim, dim_out=v_dim, glu=True, dtype=dtype, device=device, operations=operations
)
self.audio_ff = FeedForward(
a_dim, dim_out=a_dim, glu=True, dtype=dtype, device=device, operations=operations
)
self.scale_shift_table = nn.Parameter(torch.empty(6, v_dim, device=device, dtype=dtype))
self.audio_scale_shift_table = nn.Parameter(
torch.empty(6, a_dim, device=device, dtype=dtype)
)
self.scale_shift_table_a2v_ca_audio = nn.Parameter(
torch.empty(5, a_dim, device=device, dtype=dtype)
)
self.scale_shift_table_a2v_ca_video = nn.Parameter(
torch.empty(5, v_dim, device=device, dtype=dtype)
)
def get_ada_values(
self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None)
):
num_ada_params = scale_shift_table.shape[0]
ada_values = (
scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=timestep.device, dtype=timestep.dtype)
+ timestep.reshape(batch_size, timestep.shape[1], num_ada_params, -1)[:, :, indices, :]
).unbind(dim=2)
return ada_values
def get_av_ca_ada_values(
self,
scale_shift_table: torch.Tensor,
batch_size: int,
scale_shift_timestep: torch.Tensor,
gate_timestep: torch.Tensor,
num_scale_shift_values: int = 4,
):
scale_shift_ada_values = self.get_ada_values(
scale_shift_table[:num_scale_shift_values, :],
batch_size,
scale_shift_timestep,
)
gate_ada_values = self.get_ada_values(
scale_shift_table[num_scale_shift_values:, :],
batch_size,
gate_timestep,
)
scale_shift_chunks = [t.squeeze(2) for t in scale_shift_ada_values]
gate_ada_values = [t.squeeze(2) for t in gate_ada_values]
return (*scale_shift_chunks, *gate_ada_values)
def forward(
self,
x: Tuple[torch.Tensor, torch.Tensor],
v_context=None,
a_context=None,
attention_mask=None,
v_timestep=None,
a_timestep=None,
v_pe=None,
a_pe=None,
v_cross_pe=None,
a_cross_pe=None,
v_cross_scale_shift_timestep=None,
a_cross_scale_shift_timestep=None,
v_cross_gate_timestep=None,
a_cross_gate_timestep=None,
transformer_options=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
run_vx = transformer_options.get("run_vx", True)
run_ax = transformer_options.get("run_ax", True)
vx, ax = x
run_ax = run_ax and ax.numel() > 0
run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0
run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True)
if run_vx:
vshift_msa, vscale_msa, vgate_msa = (
self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 3))
)
norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa
vx += self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options) * vgate_msa
vx += self.attn2(
comfy.ldm.common_dit.rms_norm(vx),
context=v_context,
mask=attention_mask,
transformer_options=transformer_options,
)
del vshift_msa, vscale_msa, vgate_msa
if run_ax:
ashift_msa, ascale_msa, agate_msa = (
self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 3))
)
norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa
ax += (
self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options)
* agate_msa
)
ax += self.audio_attn2(
comfy.ldm.common_dit.rms_norm(ax),
context=a_context,
mask=attention_mask,
transformer_options=transformer_options,
)
del ashift_msa, ascale_msa, agate_msa
# Audio - Video cross attention.
if run_a2v or run_v2a:
# norm3
vx_norm3 = comfy.ldm.common_dit.rms_norm(vx)
ax_norm3 = comfy.ldm.common_dit.rms_norm(ax)
(
scale_ca_audio_hidden_states_a2v,
shift_ca_audio_hidden_states_a2v,
scale_ca_audio_hidden_states_v2a,
shift_ca_audio_hidden_states_v2a,
gate_out_v2a,
) = self.get_av_ca_ada_values(
self.scale_shift_table_a2v_ca_audio,
ax.shape[0],
a_cross_scale_shift_timestep,
a_cross_gate_timestep,
)
(
scale_ca_video_hidden_states_a2v,
shift_ca_video_hidden_states_a2v,
scale_ca_video_hidden_states_v2a,
shift_ca_video_hidden_states_v2a,
gate_out_a2v,
) = self.get_av_ca_ada_values(
self.scale_shift_table_a2v_ca_video,
vx.shape[0],
v_cross_scale_shift_timestep,
v_cross_gate_timestep,
)
if run_a2v:
vx_scaled = (
vx_norm3 * (1 + scale_ca_video_hidden_states_a2v)
+ shift_ca_video_hidden_states_a2v
)
ax_scaled = (
ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v)
+ shift_ca_audio_hidden_states_a2v
)
vx += (
self.audio_to_video_attn(
vx_scaled,
context=ax_scaled,
pe=v_cross_pe,
k_pe=a_cross_pe,
transformer_options=transformer_options,
)
* gate_out_a2v
)
del gate_out_a2v
del scale_ca_video_hidden_states_a2v,\
shift_ca_video_hidden_states_a2v,\
scale_ca_audio_hidden_states_a2v,\
shift_ca_audio_hidden_states_a2v,\
if run_v2a:
ax_scaled = (
ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a)
+ shift_ca_audio_hidden_states_v2a
)
vx_scaled = (
vx_norm3 * (1 + scale_ca_video_hidden_states_v2a)
+ shift_ca_video_hidden_states_v2a
)
ax += (
self.video_to_audio_attn(
ax_scaled,
context=vx_scaled,
pe=a_cross_pe,
k_pe=v_cross_pe,
transformer_options=transformer_options,
)
* gate_out_v2a
)
del gate_out_v2a
del scale_ca_video_hidden_states_v2a,\
shift_ca_video_hidden_states_v2a,\
scale_ca_audio_hidden_states_v2a,\
shift_ca_audio_hidden_states_v2a
if run_vx:
vshift_mlp, vscale_mlp, vgate_mlp = (
self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, None))
)
vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp
vx += self.ff(vx_scaled) * vgate_mlp
del vshift_mlp, vscale_mlp, vgate_mlp
if run_ax:
ashift_mlp, ascale_mlp, agate_mlp = (
self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, None))
)
ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp
ax += self.audio_ff(ax_scaled) * agate_mlp
del ashift_mlp, ascale_mlp, agate_mlp
return vx, ax
class LTXAVModel(LTXVModel):
"""LTXAV model for audio-video generation."""
def __init__(
self,
in_channels=128,
audio_in_channels=128,
cross_attention_dim=4096,
audio_cross_attention_dim=2048,
attention_head_dim=128,
audio_attention_head_dim=64,
num_attention_heads=32,
audio_num_attention_heads=32,
caption_channels=3840,
num_layers=48,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
audio_positional_embedding_max_pos=[20],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier=1000.0,
av_ca_timestep_scale_multiplier=1.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
# Store audio-specific parameters
self.audio_in_channels = audio_in_channels
self.audio_cross_attention_dim = audio_cross_attention_dim
self.audio_attention_head_dim = audio_attention_head_dim
self.audio_num_attention_heads = audio_num_attention_heads
self.audio_positional_embedding_max_pos = audio_positional_embedding_max_pos
# Calculate audio dimensions
self.audio_inner_dim = audio_num_attention_heads * audio_attention_head_dim
self.audio_out_channels = audio_in_channels
# Audio-specific constants
self.num_audio_channels = 8
self.audio_frequency_bins = 16
self.av_ca_timestep_scale_multiplier = av_ca_timestep_scale_multiplier
super().__init__(
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_channels=caption_channels,
num_layers=num_layers,
positional_embedding_theta=positional_embedding_theta,
positional_embedding_max_pos=positional_embedding_max_pos,
causal_temporal_positioning=causal_temporal_positioning,
vae_scale_factors=vae_scale_factors,
use_middle_indices_grid=use_middle_indices_grid,
timestep_scale_multiplier=timestep_scale_multiplier,
dtype=dtype,
device=device,
operations=operations,
**kwargs,
)
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize LTXAV-specific components."""
# Audio-specific projections
self.audio_patchify_proj = self.operations.Linear(
self.audio_in_channels, self.audio_inner_dim, bias=True, dtype=dtype, device=device
)
# Audio-specific AdaLN
self.audio_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
dtype=dtype,
device=device,
operations=self.operations,
)
num_scale_shift_values = 4
self.av_ca_video_scale_shift_adaln_single = AdaLayerNormSingle(
self.inner_dim,
use_additional_conditions=False,
embedding_coefficient=num_scale_shift_values,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_a2v_gate_adaln_single = AdaLayerNormSingle(
self.inner_dim,
use_additional_conditions=False,
embedding_coefficient=1,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_audio_scale_shift_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
embedding_coefficient=num_scale_shift_values,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_v2a_gate_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
embedding_coefficient=1,
dtype=dtype,
device=device,
operations=self.operations,
)
# Audio caption projection
self.audio_caption_projection = PixArtAlphaTextProjection(
in_features=self.caption_channels,
hidden_size=self.audio_inner_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks for LTXAV."""
self.transformer_blocks = nn.ModuleList(
[
BasicAVTransformerBlock(
v_dim=self.inner_dim,
a_dim=self.audio_inner_dim,
v_heads=self.num_attention_heads,
a_heads=self.audio_num_attention_heads,
vd_head=self.attention_head_dim,
ad_head=self.audio_attention_head_dim,
v_context_dim=self.cross_attention_dim,
a_context_dim=self.audio_cross_attention_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
for _ in range(self.num_layers)
]
)
def _init_output_components(self, device, dtype):
"""Initialize output components for LTXAV."""
# Video output components
super()._init_output_components(device, dtype)
# Audio output components
self.audio_scale_shift_table = nn.Parameter(
torch.empty(2, self.audio_inner_dim, dtype=dtype, device=device)
)
self.audio_norm_out = self.operations.LayerNorm(
self.audio_inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.audio_proj_out = self.operations.Linear(
self.audio_inner_dim, self.audio_out_channels, dtype=dtype, device=device
)
self.a_patchifier = AudioPatchifier(1, start_end=True)
def separate_audio_and_video_latents(self, x, audio_length):
"""Separate audio and video latents from combined input."""
# vx = x[:, : self.in_channels]
# ax = x[:, self.in_channels :]
#
# ax = ax.reshape(ax.shape[0], -1)
# ax = ax[:, : audio_length * self.num_audio_channels * self.audio_frequency_bins]
#
# ax = ax.reshape(
# ax.shape[0], self.num_audio_channels, audio_length, self.audio_frequency_bins
# )
vx = x[0]
ax = x[1] if len(x) > 1 else torch.zeros(
(vx.shape[0], self.num_audio_channels, 0, self.audio_frequency_bins),
device=vx.device, dtype=vx.dtype
)
return vx, ax
def recombine_audio_and_video_latents(self, vx, ax, target_shape=None):
if ax.numel() == 0:
return vx
else:
return [vx, ax]
"""Recombine audio and video latents for output."""
# if ax.device != vx.device or ax.dtype != vx.dtype:
# logging.warning("Audio and video latents are on different devices or dtypes.")
# ax = ax.to(device=vx.device, dtype=vx.dtype)
# logging.warning(f"Audio audio latent moved to device: {ax.device}, dtype: {ax.dtype}")
#
# ax = ax.reshape(ax.shape[0], -1)
# # pad to f x h x w of the video latents
# divisor = vx.shape[-1] * vx.shape[-2] * vx.shape[-3]
# if target_shape is None:
# repetitions = math.ceil(ax.shape[-1] / divisor)
# else:
# repetitions = target_shape[1] - vx.shape[1]
# padded_len = repetitions * divisor
# ax = F.pad(ax, (0, padded_len - ax.shape[-1]))
# ax = ax.reshape(ax.shape[0], -1, vx.shape[-3], vx.shape[-2], vx.shape[-1])
# return torch.cat([vx, ax], dim=1)
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input for LTXAV - separate audio and video, then patchify."""
audio_length = kwargs.get("audio_length", 0)
# Separate audio and video latents
vx, ax = self.separate_audio_and_video_latents(x, audio_length)
[vx, v_pixel_coords, additional_args] = super()._process_input(
vx, keyframe_idxs, denoise_mask, **kwargs
)
ax, a_latent_coords = self.a_patchifier.patchify(ax)
ax = self.audio_patchify_proj(ax)
# additional_args.update({"av_orig_shape": list(x.shape)})
return [vx, ax], [v_pixel_coords, a_latent_coords], additional_args
def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs):
"""Prepare timestep embeddings."""
# TODO: some code reuse is needed here.
grid_mask = kwargs.get("grid_mask", None)
if grid_mask is not None:
timestep = timestep[:, grid_mask]
timestep = timestep * self.timestep_scale_multiplier
v_timestep, v_embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
v_timestep = v_timestep.view(batch_size, -1, v_timestep.shape[-1])
v_embedded_timestep = v_embedded_timestep.view(
batch_size, -1, v_embedded_timestep.shape[-1]
)
# Prepare audio timestep
a_timestep = kwargs.get("a_timestep")
if a_timestep is not None:
a_timestep = a_timestep * self.timestep_scale_multiplier
av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier
av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single(
a_timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single(
timestep.flatten() * av_ca_factor,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single(
a_timestep.flatten() * av_ca_factor,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
a_timestep, a_embedded_timestep = self.audio_adaln_single(
a_timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1])
a_embedded_timestep = a_embedded_timestep.view(
batch_size, -1, a_embedded_timestep.shape[-1]
)
cross_av_timestep_ss = [
av_ca_audio_scale_shift_timestep,
av_ca_video_scale_shift_timestep,
av_ca_a2v_gate_noise_timestep,
av_ca_v2a_gate_noise_timestep,
]
cross_av_timestep_ss = list(
[t.view(batch_size, -1, t.shape[-1]) for t in cross_av_timestep_ss]
)
else:
a_timestep = timestep
a_embedded_timestep = kwargs.get("embedded_timestep")
cross_av_timestep_ss = []
return [v_timestep, a_timestep, cross_av_timestep_ss], [
v_embedded_timestep,
a_embedded_timestep,
]
def _prepare_context(self, context, batch_size, x, attention_mask=None):
vx = x[0]
ax = x[1]
v_context, a_context = torch.split(
context, int(context.shape[-1] / 2), len(context.shape) - 1
)
v_context, attention_mask = super()._prepare_context(
v_context, batch_size, vx, attention_mask
)
if self.audio_caption_projection is not None:
a_context = self.audio_caption_projection(a_context)
a_context = a_context.view(batch_size, -1, ax.shape[-1])
return [v_context, a_context], attention_mask
def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype):
v_pixel_coords = pixel_coords[0]
v_pe = super()._prepare_positional_embeddings(v_pixel_coords, frame_rate, x_dtype)
a_latent_coords = pixel_coords[1]
a_pe = self._precompute_freqs_cis(
a_latent_coords,
dim=self.audio_inner_dim,
out_dtype=x_dtype,
max_pos=self.audio_positional_embedding_max_pos,
use_middle_indices_grid=self.use_middle_indices_grid,
num_attention_heads=self.audio_num_attention_heads,
)
# calculate positional embeddings for the middle of the token duration, to use in av cross attention layers.
max_pos = max(
self.positional_embedding_max_pos[0], self.audio_positional_embedding_max_pos[0]
)
v_pixel_coords = v_pixel_coords.to(torch.float32)
v_pixel_coords[:, 0] = v_pixel_coords[:, 0] * (1.0 / frame_rate)
av_cross_video_freq_cis = self._precompute_freqs_cis(
v_pixel_coords[:, 0:1, :],
dim=self.audio_cross_attention_dim,
out_dtype=x_dtype,
max_pos=[max_pos],
use_middle_indices_grid=True,
num_attention_heads=self.audio_num_attention_heads,
)
av_cross_audio_freq_cis = self._precompute_freqs_cis(
a_latent_coords[:, 0:1, :],
dim=self.audio_cross_attention_dim,
out_dtype=x_dtype,
max_pos=[max_pos],
use_middle_indices_grid=True,
num_attention_heads=self.audio_num_attention_heads,
)
return [(v_pe, av_cross_video_freq_cis), (a_pe, av_cross_audio_freq_cis)]
def _process_transformer_blocks(
self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs
):
vx = x[0]
ax = x[1]
v_context = context[0]
a_context = context[1]
v_timestep = timestep[0]
a_timestep = timestep[1]
v_pe, av_cross_video_freq_cis = pe[0]
a_pe, av_cross_audio_freq_cis = pe[1]
(
av_ca_audio_scale_shift_timestep,
av_ca_video_scale_shift_timestep,
av_ca_a2v_gate_noise_timestep,
av_ca_v2a_gate_noise_timestep,
) = timestep[2]
"""Process transformer blocks for LTXAV."""
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
# Process transformer blocks
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(
args["img"],
v_context=args["v_context"],
a_context=args["a_context"],
attention_mask=args["attention_mask"],
v_timestep=args["v_timestep"],
a_timestep=args["a_timestep"],
v_pe=args["v_pe"],
a_pe=args["a_pe"],
v_cross_pe=args["v_cross_pe"],
a_cross_pe=args["a_cross_pe"],
v_cross_scale_shift_timestep=args["v_cross_scale_shift_timestep"],
a_cross_scale_shift_timestep=args["a_cross_scale_shift_timestep"],
v_cross_gate_timestep=args["v_cross_gate_timestep"],
a_cross_gate_timestep=args["a_cross_gate_timestep"],
transformer_options=args["transformer_options"],
)
return out
out = blocks_replace[("double_block", i)](
{
"img": (vx, ax),
"v_context": v_context,
"a_context": a_context,
"attention_mask": attention_mask,
"v_timestep": v_timestep,
"a_timestep": a_timestep,
"v_pe": v_pe,
"a_pe": a_pe,
"v_cross_pe": av_cross_video_freq_cis,
"a_cross_pe": av_cross_audio_freq_cis,
"v_cross_scale_shift_timestep": av_ca_video_scale_shift_timestep,
"a_cross_scale_shift_timestep": av_ca_audio_scale_shift_timestep,
"v_cross_gate_timestep": av_ca_a2v_gate_noise_timestep,
"a_cross_gate_timestep": av_ca_v2a_gate_noise_timestep,
"transformer_options": transformer_options,
},
{"original_block": block_wrap},
)
vx, ax = out["img"]
else:
vx, ax = block(
(vx, ax),
v_context=v_context,
a_context=a_context,
attention_mask=attention_mask,
v_timestep=v_timestep,
a_timestep=a_timestep,
v_pe=v_pe,
a_pe=a_pe,
v_cross_pe=av_cross_video_freq_cis,
a_cross_pe=av_cross_audio_freq_cis,
v_cross_scale_shift_timestep=av_ca_video_scale_shift_timestep,
a_cross_scale_shift_timestep=av_ca_audio_scale_shift_timestep,
v_cross_gate_timestep=av_ca_a2v_gate_noise_timestep,
a_cross_gate_timestep=av_ca_v2a_gate_noise_timestep,
transformer_options=transformer_options,
)
return [vx, ax]
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
vx = x[0]
ax = x[1]
v_embedded_timestep = embedded_timestep[0]
a_embedded_timestep = embedded_timestep[1]
vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs)
# Process audio output
a_scale_shift_values = (
self.audio_scale_shift_table[None, None].to(device=a_embedded_timestep.device, dtype=a_embedded_timestep.dtype)
+ a_embedded_timestep[:, :, None]
)
a_shift, a_scale = a_scale_shift_values[:, :, 0], a_scale_shift_values[:, :, 1]
ax = self.audio_norm_out(ax)
ax = ax * (1 + a_scale) + a_shift
ax = self.audio_proj_out(ax)
# Unpatchify audio
ax = self.a_patchifier.unpatchify(
ax, channels=self.num_audio_channels, freq=self.audio_frequency_bins
)
# Recombine audio and video
original_shape = kwargs.get("av_orig_shape")
return self.recombine_audio_and_video_latents(vx, ax, original_shape)
def forward(
self,
x,
timestep,
context,
attention_mask=None,
frame_rate=25,
transformer_options={},
keyframe_idxs=None,
**kwargs,
):
"""
Forward pass for LTXAV model.
Args:
x: Combined audio-video input tensor
timestep: Tuple of (video_timestep, audio_timestep) or single timestep
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments including audio_length
Returns:
Combined audio-video output tensor
"""
# Handle timestep format
if isinstance(timestep, (tuple, list)) and len(timestep) == 2:
v_timestep, a_timestep = timestep
kwargs["a_timestep"] = a_timestep
timestep = v_timestep
else:
kwargs["a_timestep"] = timestep
# Call parent forward method
return super().forward(
x,
timestep,
context,
attention_mask,
frame_rate,
transformer_options,
keyframe_idxs,
**kwargs,
)

View File

@ -0,0 +1,305 @@
import math
from typing import Optional
import comfy.ldm.common_dit
import torch
from comfy.ldm.lightricks.model import (
CrossAttention,
FeedForward,
generate_freq_grid_np,
interleaved_freqs_cis,
split_freqs_cis,
)
from torch import nn
class BasicTransformerBlock1D(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`.
norm_eps (`float`, *optional*, defaults to 1e-5): Epsilon value for normalization layers.
qk_norm (`str`, *optional*, defaults to None):
Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*): Dimension of the inner feed-forward layer. If not provided, defaults to `dim * 4`.
ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward layer.
attention_out_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the attention output layer.
use_rope (`bool`, *optional*, defaults to `False`): Whether to use Rotary Position Embeddings (RoPE).
ffn_dim_mult (`int`, *optional*, defaults to 4): Multiplier for the inner dimension of the feed-forward layer.
"""
def __init__(
self,
dim,
n_heads,
d_head,
context_dim=None,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.attn1 = CrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
context_dim=None,
dtype=dtype,
device=device,
operations=operations,
)
# 3. Feed-forward
self.ff = FeedForward(
dim,
dim_out=dim,
glu=True,
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, hidden_states, attention_mask=None, pe=None) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Normalization Before Self-Attention
norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
norm_hidden_states = norm_hidden_states.squeeze(1)
# 2. Self-Attention
attn_output = self.attn1(norm_hidden_states, mask=attention_mask, pe=pe)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 3. Normalization before Feed-Forward
norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class Embeddings1DConnector(nn.Module):
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=128,
num_attention_heads=30,
num_layers=2,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[4096],
causal_temporal_positioning=False,
num_learnable_registers: Optional[int] = 128,
dtype=None,
device=None,
operations=None,
split_rope=False,
double_precision_rope=False,
**kwargs,
):
super().__init__()
self.dtype = dtype
self.out_channels = in_channels
self.num_attention_heads = num_attention_heads
self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.split_rope = split_rope
self.double_precision_rope = double_precision_rope
self.transformer_1d_blocks = nn.ModuleList(
[
BasicTransformerBlock1D(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(num_layers)
]
)
inner_dim = num_attention_heads * attention_head_dim
self.num_learnable_registers = num_learnable_registers
if self.num_learnable_registers:
self.learnable_registers = nn.Parameter(
torch.rand(
self.num_learnable_registers, inner_dim, dtype=dtype, device=device
)
* 2.0
- 1.0
)
def get_fractional_positions(self, indices_grid):
fractional_positions = torch.stack(
[
indices_grid[:, i] / self.positional_embedding_max_pos[i]
for i in range(1)
],
dim=-1,
)
return fractional_positions
def precompute_freqs(self, indices_grid, spacing):
source_dtype = indices_grid.dtype
dtype = (
torch.float32
if source_dtype in (torch.bfloat16, torch.float16)
else source_dtype
)
fractional_positions = self.get_fractional_positions(indices_grid)
indices = (
generate_freq_grid_np(
self.positional_embedding_theta,
indices_grid.shape[1],
self.inner_dim,
)
if self.double_precision_rope
else self.generate_freq_grid(spacing, dtype, fractional_positions.device)
).to(device=fractional_positions.device)
if spacing == "exp_2":
freqs = (
(indices * fractional_positions.unsqueeze(-1))
.transpose(-1, -2)
.flatten(2)
)
else:
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
return freqs
def generate_freq_grid(self, spacing, dtype, device):
dim = self.inner_dim
theta = self.positional_embedding_theta
n_pos_dims = 1
n_elem = 2 * n_pos_dims # 2 for cos and sin e.g. x 3 = 6
start = 1
end = theta
if spacing == "exp":
indices = theta ** (torch.arange(0, dim, n_elem, device="cpu", dtype=torch.float32) / (dim - n_elem))
indices = indices.to(dtype=dtype, device=device)
elif spacing == "exp_2":
indices = 1.0 / theta ** (torch.arange(0, dim, n_elem, device=device) / dim)
indices = indices.to(dtype=dtype)
elif spacing == "linear":
indices = torch.linspace(
start, end, dim // n_elem, device=device, dtype=dtype
)
elif spacing == "sqrt":
indices = torch.linspace(
start**2, end**2, dim // n_elem, device=device, dtype=dtype
).sqrt()
indices = indices * math.pi / 2
return indices
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
dim = self.inner_dim
n_elem = 2 # 2 because of cos and sin
freqs = self.precompute_freqs(indices_grid, spacing)
if self.split_rope:
expected_freqs = dim // 2
current_freqs = freqs.shape[-1]
pad_size = expected_freqs - current_freqs
cos_freq, sin_freq = split_freqs_cis(
freqs, pad_size, self.num_attention_heads
)
else:
cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem)
return cos_freq.to(self.dtype), sin_freq.to(self.dtype), self.split_rope
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 1. Input
if self.num_learnable_registers:
num_registers_duplications = math.ceil(
max(1024, hidden_states.shape[1]) / self.num_learnable_registers
)
learnable_registers = torch.tile(
self.learnable_registers, (num_registers_duplications, 1)
)
hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1)
if attention_mask is not None:
attention_mask = torch.zeros([1, 1, 1, hidden_states.shape[1]], dtype=attention_mask.dtype, device=attention_mask.device)
indices_grid = torch.arange(
hidden_states.shape[1], dtype=torch.float32, device=hidden_states.device
)
indices_grid = indices_grid[None, None, :]
freqs_cis = self.precompute_freqs_cis(indices_grid)
# 2. Blocks
for block_idx, block in enumerate(self.transformer_1d_blocks):
hidden_states = block(
hidden_states, attention_mask=attention_mask, pe=freqs_cis
)
# 3. Output
# if self.output_scale is not None:
# hidden_states = hidden_states / self.output_scale
hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
return hidden_states, attention_mask

View File

@ -0,0 +1,292 @@
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
def _rational_for_scale(scale: float) -> Tuple[int, int]:
mapping = {0.75: (3, 4), 1.5: (3, 2), 2.0: (2, 1), 4.0: (4, 1)}
if float(scale) not in mapping:
raise ValueError(
f"Unsupported spatial_scale {scale}. Choose from {list(mapping.keys())}"
)
return mapping[float(scale)]
class PixelShuffleND(nn.Module):
def __init__(self, dims, upscale_factors=(2, 2, 2)):
super().__init__()
assert dims in [1, 2, 3], "dims must be 1, 2, or 3"
self.dims = dims
self.upscale_factors = upscale_factors
def forward(self, x):
if self.dims == 3:
return rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.upscale_factors[0],
p2=self.upscale_factors[1],
p3=self.upscale_factors[2],
)
elif self.dims == 2:
return rearrange(
x,
"b (c p1 p2) h w -> b c (h p1) (w p2)",
p1=self.upscale_factors[0],
p2=self.upscale_factors[1],
)
elif self.dims == 1:
return rearrange(
x,
"b (c p1) f h w -> b c (f p1) h w",
p1=self.upscale_factors[0],
)
class BlurDownsample(nn.Module):
"""
Anti-aliased spatial downsampling by integer stride using a fixed separable binomial kernel.
Applies only on H,W. Works for dims=2 or dims=3 (per-frame).
"""
def __init__(self, dims: int, stride: int):
super().__init__()
assert dims in (2, 3)
assert stride >= 1 and isinstance(stride, int)
self.dims = dims
self.stride = stride
# 5x5 separable binomial kernel [1,4,6,4,1] (outer product), normalized
k = torch.tensor([1.0, 4.0, 6.0, 4.0, 1.0])
k2d = k[:, None] @ k[None, :]
k2d = (k2d / k2d.sum()).float() # shape (5,5)
self.register_buffer("kernel", k2d[None, None, :, :]) # (1,1,5,5)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.stride == 1:
return x
def _apply_2d(x2d: torch.Tensor) -> torch.Tensor:
# x2d: (B, C, H, W)
B, C, H, W = x2d.shape
weight = self.kernel.expand(C, 1, 5, 5) # depthwise
x2d = F.conv2d(
x2d, weight=weight, bias=None, stride=self.stride, padding=2, groups=C
)
return x2d
if self.dims == 2:
return _apply_2d(x)
else:
# dims == 3: apply per-frame on H,W
b, c, f, h, w = x.shape
x = rearrange(x, "b c f h w -> (b f) c h w")
x = _apply_2d(x)
h2, w2 = x.shape[-2:]
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f, h=h2, w=w2)
return x
class SpatialRationalResampler(nn.Module):
"""
Fully-learned rational spatial scaling: up by 'num' via PixelShuffle, then anti-aliased
downsample by 'den' using fixed blur + stride. Operates on H,W only.
For dims==3, work per-frame for spatial scaling (temporal axis untouched).
"""
def __init__(self, mid_channels: int, scale: float):
super().__init__()
self.scale = float(scale)
self.num, self.den = _rational_for_scale(self.scale)
self.conv = nn.Conv2d(
mid_channels, (self.num**2) * mid_channels, kernel_size=3, padding=1
)
self.pixel_shuffle = PixelShuffleND(2, upscale_factors=(self.num, self.num))
self.blur_down = BlurDownsample(dims=2, stride=self.den)
def forward(self, x: torch.Tensor) -> torch.Tensor:
b, c, f, h, w = x.shape
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.conv(x)
x = self.pixel_shuffle(x)
x = self.blur_down(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
return x
class ResBlock(nn.Module):
def __init__(
self, channels: int, mid_channels: Optional[int] = None, dims: int = 3
):
super().__init__()
if mid_channels is None:
mid_channels = channels
Conv = nn.Conv2d if dims == 2 else nn.Conv3d
self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1)
self.norm1 = nn.GroupNorm(32, mid_channels)
self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1)
self.norm2 = nn.GroupNorm(32, channels)
self.activation = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = self.conv1(x)
x = self.norm1(x)
x = self.activation(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.activation(x + residual)
return x
class LatentUpsampler(nn.Module):
"""
Model to spatially upsample VAE latents.
Args:
in_channels (`int`): Number of channels in the input latent
mid_channels (`int`): Number of channels in the middle layers
num_blocks_per_stage (`int`): Number of ResBlocks to use in each stage (pre/post upsampling)
dims (`int`): Number of dimensions for convolutions (2 or 3)
spatial_upsample (`bool`): Whether to spatially upsample the latent
temporal_upsample (`bool`): Whether to temporally upsample the latent
"""
def __init__(
self,
in_channels: int = 128,
mid_channels: int = 512,
num_blocks_per_stage: int = 4,
dims: int = 3,
spatial_upsample: bool = True,
temporal_upsample: bool = False,
spatial_scale: float = 2.0,
rational_resampler: bool = False,
):
super().__init__()
self.in_channels = in_channels
self.mid_channels = mid_channels
self.num_blocks_per_stage = num_blocks_per_stage
self.dims = dims
self.spatial_upsample = spatial_upsample
self.temporal_upsample = temporal_upsample
self.spatial_scale = float(spatial_scale)
self.rational_resampler = rational_resampler
Conv = nn.Conv2d if dims == 2 else nn.Conv3d
self.initial_conv = Conv(in_channels, mid_channels, kernel_size=3, padding=1)
self.initial_norm = nn.GroupNorm(32, mid_channels)
self.initial_activation = nn.SiLU()
self.res_blocks = nn.ModuleList(
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]
)
if spatial_upsample and temporal_upsample:
self.upsampler = nn.Sequential(
nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(3),
)
elif spatial_upsample:
if rational_resampler:
self.upsampler = SpatialRationalResampler(
mid_channels=mid_channels, scale=self.spatial_scale
)
else:
self.upsampler = nn.Sequential(
nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(2),
)
elif temporal_upsample:
self.upsampler = nn.Sequential(
nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(1),
)
else:
raise ValueError(
"Either spatial_upsample or temporal_upsample must be True"
)
self.post_upsample_res_blocks = nn.ModuleList(
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]
)
self.final_conv = Conv(mid_channels, in_channels, kernel_size=3, padding=1)
def forward(self, latent: torch.Tensor) -> torch.Tensor:
b, c, f, h, w = latent.shape
if self.dims == 2:
x = rearrange(latent, "b c f h w -> (b f) c h w")
x = self.initial_conv(x)
x = self.initial_norm(x)
x = self.initial_activation(x)
for block in self.res_blocks:
x = block(x)
x = self.upsampler(x)
for block in self.post_upsample_res_blocks:
x = block(x)
x = self.final_conv(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
else:
x = self.initial_conv(latent)
x = self.initial_norm(x)
x = self.initial_activation(x)
for block in self.res_blocks:
x = block(x)
if self.temporal_upsample:
x = self.upsampler(x)
x = x[:, :, 1:, :, :]
else:
if isinstance(self.upsampler, SpatialRationalResampler):
x = self.upsampler(x)
else:
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.upsampler(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
for block in self.post_upsample_res_blocks:
x = block(x)
x = self.final_conv(x)
return x
@classmethod
def from_config(cls, config):
return cls(
in_channels=config.get("in_channels", 4),
mid_channels=config.get("mid_channels", 128),
num_blocks_per_stage=config.get("num_blocks_per_stage", 4),
dims=config.get("dims", 2),
spatial_upsample=config.get("spatial_upsample", True),
temporal_upsample=config.get("temporal_upsample", False),
spatial_scale=config.get("spatial_scale", 2.0),
rational_resampler=config.get("rational_resampler", False),
)
def config(self):
return {
"_class_name": "LatentUpsampler",
"in_channels": self.in_channels,
"mid_channels": self.mid_channels,
"num_blocks_per_stage": self.num_blocks_per_stage,
"dims": self.dims,
"spatial_upsample": self.spatial_upsample,
"temporal_upsample": self.temporal_upsample,
"spatial_scale": self.spatial_scale,
"rational_resampler": self.rational_resampler,
}

View File

@ -1,13 +1,47 @@
from abc import ABC, abstractmethod
from enum import Enum
import functools
import math
from typing import Dict, Optional, Tuple
from einops import rearrange
import numpy as np
import torch
from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
from comfy.ldm.flux.math import apply_rope1
def _log_base(x, base):
return np.log(x) / np.log(base)
class LTXRopeType(str, Enum):
INTERLEAVED = "interleaved"
SPLIT = "split"
KEY = "rope_type"
@classmethod
def from_dict(cls, kwargs, default=None):
if default is None:
default = cls.INTERLEAVED
return cls(kwargs.get(cls.KEY, default))
class LTXFrequenciesPrecision(str, Enum):
FLOAT32 = "float32"
FLOAT64 = "float64"
KEY = "frequencies_precision"
@classmethod
def from_dict(cls, kwargs, default=None):
if default is None:
default = cls.FLOAT32
return cls(kwargs.get(cls.KEY, default))
def get_timestep_embedding(
timesteps: torch.Tensor,
@ -39,9 +73,7 @@ def get_timestep_embedding(
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
@ -73,7 +105,9 @@ class TimestepEmbedding(nn.Module):
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
dtype=None, device=None, operations=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
@ -90,7 +124,9 @@ class TimestepEmbedding(nn.Module):
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
self.linear_2 = operations.Linear(
time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device
)
if post_act_fn is None:
self.post_act = None
@ -139,12 +175,22 @@ class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
def __init__(
self,
embedding_dim,
size_emb_dim,
use_additional_conditions: bool = False,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
self.timestep_embedder = TimestepEmbedding(
in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations
)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
@ -163,15 +209,22 @@ class AdaLayerNormSingle(nn.Module):
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
def __init__(
self, embedding_dim: int, embedding_coefficient: int = 6, use_additional_conditions: bool = False, dtype=None, device=None, operations=None
):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
embedding_dim,
size_emb_dim=embedding_dim // 3,
use_additional_conditions=use_additional_conditions,
dtype=dtype,
device=device,
operations=operations,
)
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
self.linear = operations.Linear(embedding_dim, embedding_coefficient * embedding_dim, bias=True, dtype=dtype, device=device)
def forward(
self,
@ -185,6 +238,7 @@ class AdaLayerNormSingle(nn.Module):
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
@ -192,18 +246,24 @@ class PixArtAlphaTextProjection(nn.Module):
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
def __init__(
self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None
):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
self.linear_1 = operations.Linear(
in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device
)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
self.linear_2 = operations.Linear(
in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
@ -222,23 +282,68 @@ class GELU_approx(nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = int(dim * mult)
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis):
cos_freqs, sin_freqs = freqs_cis[0], freqs_cis[1]
split_pe = freqs_cis[2] if len(freqs_cis) > 2 else False
return (
apply_split_rotary_emb(input_tensor, cos_freqs, sin_freqs)
if split_pe else
apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs)
)
def apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs): # TODO: remove duplicate funcs and pick the best/fastest one
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
return out
def apply_split_rotary_emb(input_tensor, cos, sin):
needs_reshape = False
if input_tensor.ndim != 4 and cos.ndim == 4:
B, H, T, _ = cos.shape
input_tensor = input_tensor.reshape(B, T, H, -1).swapaxes(1, 2)
needs_reshape = True
split_input = rearrange(input_tensor, "... (d r) -> ... d r", d=2)
first_half_input = split_input[..., :1, :]
second_half_input = split_input[..., 1:, :]
output = split_input * cos.unsqueeze(-2)
first_half_output = output[..., :1, :]
second_half_output = output[..., 1:, :]
first_half_output.addcmul_(-sin.unsqueeze(-2), second_half_input)
second_half_output.addcmul_(sin.unsqueeze(-2), first_half_input)
output = rearrange(output, "... d r -> ... (d r)")
return output.swapaxes(1, 2).reshape(B, T, -1) if needs_reshape else output
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
@ -254,9 +359,11 @@ class CrossAttention(nn.Module):
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
def forward(self, x, context=None, mask=None, pe=None, k_pe=None, transformer_options={}):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
@ -266,8 +373,8 @@ class CrossAttention(nn.Module):
k = self.k_norm(k)
if pe is not None:
q = apply_rope1(q.unsqueeze(1), pe).squeeze(1)
k = apply_rope1(k.unsqueeze(1), pe).squeeze(1)
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe if k_pe is None else k_pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
@ -277,14 +384,34 @@ class CrossAttention(nn.Module):
class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
def __init__(
self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None
):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.attn1 = CrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
@ -306,116 +433,446 @@ class BasicTransformerBlock(nn.Module):
return x
def get_fractional_positions(indices_grid, max_pos):
n_pos_dims = indices_grid.shape[1]
assert n_pos_dims == len(max_pos), f'Number of position dimensions ({n_pos_dims}) must match max_pos length ({len(max_pos)})'
fractional_positions = torch.stack(
[
indices_grid[:, i] / max_pos[i]
for i in range(3)
],
dim=-1,
[indices_grid[:, i] / max_pos[i] for i in range(n_pos_dims)],
axis=-1,
)
return fractional_positions
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32
device = indices_grid.device
@functools.lru_cache(maxsize=5)
def generate_freq_grid_np(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, _ = None):
theta = positional_embedding_theta
start = 1
end = theta
n_elem = 2 * positional_embedding_max_pos_count
pow_indices = np.power(
theta,
np.linspace(
_log_base(start, theta),
_log_base(end, theta),
inner_dim // n_elem,
dtype=np.float64,
),
)
return torch.tensor(pow_indices * math.pi / 2, dtype=torch.float32)
def generate_freq_grid_pytorch(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, device):
theta = positional_embedding_theta
start = 1
end = theta
n_elem = 2 * positional_embedding_max_pos_count
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
inner_dim // n_elem,
device=device,
dtype=torch.float32,
)
)
indices = indices.to(dtype=torch.float32)
indices = indices * math.pi / 2
return indices
def generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid):
if use_middle_indices_grid:
assert(len(indices_grid.shape) == 4 and indices_grid.shape[-1] ==2)
indices_grid_start, indices_grid_end = indices_grid[..., 0], indices_grid[..., 1]
indices_grid = (indices_grid_start + indices_grid_end) / 2.0
elif len(indices_grid.shape) == 4:
indices_grid = indices_grid[..., 0]
# Get fractional positions and compute frequency indices
fractional_positions = get_fractional_positions(indices_grid, max_pos)
indices = theta ** torch.linspace(0, 1, dim // 6, device=device, dtype=dtype) * math.pi / 2
indices = indices.to(device=fractional_positions.device)
# Compute frequencies and apply cos/sin
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
cos_vals = freqs.cos().repeat_interleave(2, dim=-1)
sin_vals = freqs.sin().repeat_interleave(2, dim=-1)
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
return freqs
# Pad if dim is not divisible by 6
if dim % 6 != 0:
padding_size = dim % 6
cos_vals = torch.cat([torch.ones_like(cos_vals[:, :, :padding_size]), cos_vals], dim=-1)
sin_vals = torch.cat([torch.zeros_like(sin_vals[:, :, :padding_size]), sin_vals], dim=-1)
def interleaved_freqs_cis(freqs, pad_size):
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if pad_size != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : pad_size])
sin_padding = torch.zeros_like(cos_freq[:, :, : pad_size])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq, sin_freq
# Reshape and extract one value per pair (since repeat_interleave duplicates each value)
cos_vals = cos_vals.reshape(*cos_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
sin_vals = sin_vals.reshape(*sin_vals.shape[:2], -1, 2)[..., 0].to(out_dtype) # [B, N, dim//2]
def split_freqs_cis(freqs, pad_size, num_attention_heads):
cos_freq = freqs.cos()
sin_freq = freqs.sin()
# Build rotation matrix [[cos, -sin], [sin, cos]] and add heads dimension
freqs_cis = torch.stack([
torch.stack([cos_vals, -sin_vals], dim=-1),
torch.stack([sin_vals, cos_vals], dim=-1)
], dim=-2).unsqueeze(1) # [B, 1, N, dim//2, 2, 2]
if pad_size != 0:
cos_padding = torch.ones_like(cos_freq[:, :, :pad_size])
sin_padding = torch.zeros_like(sin_freq[:, :, :pad_size])
return freqs_cis
cos_freq = torch.concatenate([cos_padding, cos_freq], axis=-1)
sin_freq = torch.concatenate([sin_padding, sin_freq], axis=-1)
# Reshape freqs to be compatible with multi-head attention
B , T, half_HD = cos_freq.shape
class LTXVModel(torch.nn.Module):
def __init__(self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
cos_freq = cos_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads)
sin_freq = sin_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads)
caption_channels=4096,
num_layers=28,
cos_freq = torch.swapaxes(cos_freq, 1, 2) # (B,H,T,D//2)
sin_freq = torch.swapaxes(sin_freq, 1, 2) # (B,H,T,D//2)
return cos_freq, sin_freq
class LTXBaseModel(torch.nn.Module, ABC):
"""
Abstract base class for LTX models (Lightricks Transformer models).
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
dtype=None, device=None, operations=None, **kwargs):
This class defines the common interface and shared functionality for all LTX models,
including LTXV (video) and LTXAV (audio-video) variants.
"""
def __init__(
self,
in_channels: int,
cross_attention_dim: int,
attention_head_dim: int,
num_attention_heads: int,
caption_channels: int,
num_layers: int,
positional_embedding_theta: float = 10000.0,
positional_embedding_max_pos: list = [20, 2048, 2048],
causal_temporal_positioning: bool = False,
vae_scale_factors: tuple = (8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier = 1000.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__()
self.generator = None
self.vae_scale_factors = vae_scale_factors
self.use_middle_indices_grid = use_middle_indices_grid
self.dtype = dtype
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.in_channels = in_channels
self.cross_attention_dim = cross_attention_dim
self.attention_head_dim = attention_head_dim
self.num_attention_heads = num_attention_heads
self.caption_channels = caption_channels
self.num_layers = num_layers
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.split_positional_embedding = LTXRopeType.from_dict(kwargs)
self.freq_grid_generator = (
generate_freq_grid_np if LTXFrequenciesPrecision.from_dict(kwargs) == LTXFrequenciesPrecision.FLOAT64
else generate_freq_grid_pytorch
)
self.causal_temporal_positioning = causal_temporal_positioning
self.operations = operations
self.timestep_scale_multiplier = timestep_scale_multiplier
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
# Common dimensions
self.inner_dim = num_attention_heads * attention_head_dim
self.out_channels = in_channels
# Initialize common components
self._init_common_components(device, dtype)
# Initialize model-specific components
self._init_model_components(device, dtype, **kwargs)
# Initialize transformer blocks
self._init_transformer_blocks(device, dtype, **kwargs)
# Initialize output components
self._init_output_components(device, dtype)
def _init_common_components(self, device, dtype):
"""Initialize components common to all LTX models
- patchify_proj: Linear projection for patchifying input
- adaln_single: AdaLN layer for timestep embedding
- caption_projection: Linear projection for caption embedding
"""
self.patchify_proj = self.operations.Linear(
self.in_channels, self.inner_dim, bias=True, dtype=dtype, device=device
)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=self.operations
)
# self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
in_features=self.caption_channels,
hidden_size=self.inner_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
@abstractmethod
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize model-specific components. Must be implemented by subclasses."""
pass
@abstractmethod
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks. Must be implemented by subclasses."""
pass
@abstractmethod
def _init_output_components(self, device, dtype):
"""Initialize output components. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input data. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, **kwargs):
"""Process transformer blocks. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
"""Process output data. Must be implemented by subclasses."""
pass
def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs):
"""Prepare timestep embeddings."""
grid_mask = kwargs.get("grid_mask", None)
if grid_mask is not None:
timestep = timestep[:, grid_mask]
timestep = timestep * self.timestep_scale_multiplier
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])
return timestep, embedded_timestep
def _prepare_context(self, context, batch_size, x, attention_mask=None):
"""Prepare context for transformer blocks."""
if self.caption_projection is not None:
context = self.caption_projection(context)
context = context.view(batch_size, -1, x.shape[-1])
return context, attention_mask
def _precompute_freqs_cis(
self,
indices_grid,
dim,
out_dtype,
theta=10000.0,
max_pos=[20, 2048, 2048],
use_middle_indices_grid=False,
num_attention_heads=32,
):
split_mode = self.split_positional_embedding == LTXRopeType.SPLIT
indices = self.freq_grid_generator(theta, indices_grid.shape[1], dim, indices_grid.device)
freqs = generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid)
if split_mode:
expected_freqs = dim // 2
current_freqs = freqs.shape[-1]
pad_size = expected_freqs - current_freqs
cos_freq, sin_freq = split_freqs_cis(freqs, pad_size, num_attention_heads)
else:
# 2 because of cos and sin by 3 for (t, x, y), 1 for temporal only
n_elem = 2 * indices_grid.shape[1]
cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype), split_mode
def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype):
"""Prepare positional embeddings."""
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
pe = self._precompute_freqs_cis(
fractional_coords,
dim=self.inner_dim,
out_dtype=x_dtype,
max_pos=self.positional_embedding_max_pos,
use_middle_indices_grid=self.use_middle_indices_grid,
num_attention_heads=self.num_attention_heads,
)
return pe
def _prepare_attention_mask(self, attention_mask, x_dtype):
"""Prepare attention mask."""
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x_dtype).reshape(
(attention_mask.shape[0], 1, -1, attention_mask.shape[-1])
) * torch.finfo(x_dtype).max
return attention_mask
def forward(
self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs
):
"""
Forward pass for LTX models.
Args:
x: Input tensor
timestep: Timestep tensor
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments
Returns:
Processed output tensor
"""
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(
comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options
),
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, denoise_mask=denoise_mask, **kwargs)
def _forward(
self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs
):
"""
Internal forward pass for LTX models.
Args:
x: Input tensor
timestep: Timestep tensor
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments
Returns:
Processed output tensor
"""
if isinstance(x, list):
input_dtype = x[0].dtype
batch_size = x[0].shape[0]
else:
input_dtype = x.dtype
batch_size = x.shape[0]
# Process input
merged_args = {**transformer_options, **kwargs}
x, pixel_coords, additional_args = self._process_input(x, keyframe_idxs, denoise_mask, **merged_args)
merged_args.update(additional_args)
# Prepare timestep and context
timestep, embedded_timestep = self._prepare_timestep(timestep, batch_size, input_dtype, **merged_args)
context, attention_mask = self._prepare_context(context, batch_size, x, attention_mask)
# Prepare attention mask and positional embeddings
attention_mask = self._prepare_attention_mask(attention_mask, input_dtype)
pe = self._prepare_positional_embeddings(pixel_coords, frame_rate, input_dtype)
# Process transformer blocks
x = self._process_transformer_blocks(
x, context, attention_mask, timestep, pe, transformer_options=transformer_options, **merged_args
)
# Process output
x = self._process_output(x, embedded_timestep, keyframe_idxs, **merged_args)
return x
class LTXVModel(LTXBaseModel):
"""LTXV model for video generation."""
def __init__(
self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
caption_channels=4096,
num_layers=28,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier = 1000.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__(
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_channels=caption_channels,
num_layers=num_layers,
positional_embedding_theta=positional_embedding_theta,
positional_embedding_max_pos=positional_embedding_max_pos,
causal_temporal_positioning=causal_temporal_positioning,
vae_scale_factors=vae_scale_factors,
use_middle_indices_grid=use_middle_indices_grid,
timestep_scale_multiplier=timestep_scale_multiplier,
dtype=dtype,
device=device,
operations=operations,
**kwargs,
)
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize LTXV-specific components."""
# No additional components needed for LTXV beyond base class
pass
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks for LTXV."""
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
# attn_precision=attn_precision,
dtype=dtype, device=device, operations=operations
self.num_attention_heads,
self.attention_head_dim,
context_dim=self.cross_attention_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
for d in range(num_layers)
for _ in range(self.num_layers)
]
)
def _init_output_components(self, device, dtype):
"""Initialize output components for LTXV."""
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs)
def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
orig_shape = list(x.shape)
self.norm_out = self.operations.LayerNorm(
self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.proj_out = self.operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1, start_end=True)
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input for LTXV."""
additional_args = {"orig_shape": list(x.shape)}
x, latent_coords = self.patchifier.patchify(x)
pixel_coords = latent_to_pixel_coords(
latent_coords=latent_coords,
@ -423,44 +880,30 @@ class LTXVModel(torch.nn.Module):
causal_fix=self.causal_temporal_positioning,
)
grid_mask = None
if keyframe_idxs is not None:
pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs
additional_args.update({ "orig_patchified_shape": list(x.shape)})
denoise_mask = self.patchifier.patchify(denoise_mask)[0]
grid_mask = ~torch.any(denoise_mask < 0, dim=-1)[0]
additional_args.update({"grid_mask": grid_mask})
x = x[:, grid_mask, :]
pixel_coords = pixel_coords[:, :, grid_mask, ...]
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
kf_grid_mask = grid_mask[-keyframe_idxs.shape[2]:]
keyframe_idxs = keyframe_idxs[..., kf_grid_mask, :]
pixel_coords[:, :, -keyframe_idxs.shape[2]:, :] = keyframe_idxs
x = self.patchify_proj(x)
timestep = timestep * 1000.0
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=x.dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = x.shape[0]
context = self.caption_projection(context)
context = context.view(
batch_size, -1, x.shape[-1]
)
return x, pixel_coords, additional_args
def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs):
"""Process transformer blocks for LTXV."""
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
@ -478,16 +921,28 @@ class LTXVModel(torch.nn.Module):
transformer_options=transformer_options,
)
# 3. Output
return x
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
"""Process output for LTXV."""
# Apply scale-shift modulation
scale_shift_values = (
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
x = self.norm_out(x)
# Modulation
x = torch.addcmul(x, x, scale).add_(shift)
x = x * (1 + scale) + shift
x = self.proj_out(x)
if keyframe_idxs is not None:
grid_mask = kwargs["grid_mask"]
orig_patchified_shape = kwargs["orig_patchified_shape"]
full_x = torch.zeros(orig_patchified_shape, dtype=x.dtype, device=x.device)
full_x[:, grid_mask, :] = x
x = full_x
# Unpatchify to restore original dimensions
orig_shape = kwargs["orig_shape"]
x = self.patchifier.unpatchify(
latents=x,
output_height=orig_shape[3],

View File

@ -21,20 +21,23 @@ def latent_to_pixel_coords(
Returns:
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
"""
shape = [1] * latent_coords.ndim
shape[1] = -1
pixel_coords = (
latent_coords
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
* torch.tensor(scale_factors, device=latent_coords.device).view(*shape)
)
if causal_fix:
# Fix temporal scale for first frame to 1 due to causality
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
pixel_coords[:, 0, ...] = (pixel_coords[:, 0, ...] + 1 - scale_factors[0]).clamp(min=0)
return pixel_coords
class Patchifier(ABC):
def __init__(self, patch_size: int):
def __init__(self, patch_size: int, start_end: bool=False):
super().__init__()
self._patch_size = (1, patch_size, patch_size)
self.start_end = start_end
@abstractmethod
def patchify(
@ -71,11 +74,23 @@ class Patchifier(ABC):
torch.arange(0, latent_width, self._patch_size[2], device=device),
indexing="ij",
)
latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_coords = rearrange(
latent_coords, "b c f h w -> b c (f h w)", b=batch_size
latent_sample_coords_start = torch.stack(latent_sample_coords, dim=0)
delta = torch.tensor(self._patch_size, device=latent_sample_coords_start.device, dtype=latent_sample_coords_start.dtype)[:, None, None, None]
latent_sample_coords_end = latent_sample_coords_start + delta
latent_sample_coords_start = latent_sample_coords_start.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_sample_coords_start = rearrange(
latent_sample_coords_start, "b c f h w -> b c (f h w)", b=batch_size
)
if self.start_end:
latent_sample_coords_end = latent_sample_coords_end.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_sample_coords_end = rearrange(
latent_sample_coords_end, "b c f h w -> b c (f h w)", b=batch_size
)
latent_coords = torch.stack((latent_sample_coords_start, latent_sample_coords_end), dim=-1)
else:
latent_coords = latent_sample_coords_start
return latent_coords
@ -115,3 +130,61 @@ class SymmetricPatchifier(Patchifier):
q=self._patch_size[2],
)
return latents
class AudioPatchifier(Patchifier):
def __init__(self, patch_size: int,
sample_rate=16000,
hop_length=160,
audio_latent_downsample_factor=4,
is_causal=True,
start_end=False,
shift = 0
):
super().__init__(patch_size, start_end=start_end)
self.hop_length = hop_length
self.sample_rate = sample_rate
self.audio_latent_downsample_factor = audio_latent_downsample_factor
self.is_causal = is_causal
self.shift = shift
def copy_with_shift(self, shift):
return AudioPatchifier(
self.patch_size, self.sample_rate, self.hop_length, self.audio_latent_downsample_factor,
self.is_causal, self.start_end, shift
)
def _get_audio_latent_time_in_sec(self, start_latent, end_latent: int, dtype: torch.dtype, device=torch.device):
audio_latent_frame = torch.arange(start_latent, end_latent, dtype=dtype, device=device)
audio_mel_frame = audio_latent_frame * self.audio_latent_downsample_factor
if self.is_causal:
audio_mel_frame = (audio_mel_frame + 1 - self.audio_latent_downsample_factor).clip(min=0)
return audio_mel_frame * self.hop_length / self.sample_rate
def patchify(self, audio_latents: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# audio_latents: (batch, channels, time, freq)
b, _, t, _ = audio_latents.shape
audio_latents = rearrange(
audio_latents,
"b c t f -> b t (c f)",
)
audio_latents_start_timings = self._get_audio_latent_time_in_sec(self.shift, t + self.shift, torch.float32, audio_latents.device)
audio_latents_start_timings = audio_latents_start_timings.unsqueeze(0).expand(b, -1).unsqueeze(1)
if self.start_end:
audio_latents_end_timings = self._get_audio_latent_time_in_sec(self.shift + 1, t + self.shift + 1, torch.float32, audio_latents.device)
audio_latents_end_timings = audio_latents_end_timings.unsqueeze(0).expand(b, -1).unsqueeze(1)
audio_latents_timings = torch.stack([audio_latents_start_timings, audio_latents_end_timings], dim=-1)
else:
audio_latents_timings = audio_latents_start_timings
return audio_latents, audio_latents_timings
def unpatchify(self, audio_latents: torch.Tensor, channels: int, freq: int) -> torch.Tensor:
# audio_latents: (batch, time, freq * channels)
audio_latents = rearrange(
audio_latents, "b t (c f) -> b c t f", c=channels, f=freq
)
return audio_latents

View File

@ -0,0 +1,286 @@
import json
from dataclasses import dataclass
import math
import torch
import torchaudio
import comfy.model_management
import comfy.model_patcher
import comfy.utils as utils
from comfy.ldm.mmaudio.vae.distributions import DiagonalGaussianDistribution
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
from comfy.ldm.lightricks.vae.causal_audio_autoencoder import (
CausalityAxis,
CausalAudioAutoencoder,
)
from comfy.ldm.lightricks.vocoders.vocoder import Vocoder
LATENT_DOWNSAMPLE_FACTOR = 4
@dataclass(frozen=True)
class AudioVAEComponentConfig:
"""Container for model component configuration extracted from metadata."""
autoencoder: dict
vocoder: dict
@classmethod
def from_metadata(cls, metadata: dict) -> "AudioVAEComponentConfig":
assert metadata is not None and "config" in metadata, "Metadata is required for audio VAE"
raw_config = metadata["config"]
if isinstance(raw_config, str):
parsed_config = json.loads(raw_config)
else:
parsed_config = raw_config
audio_config = parsed_config.get("audio_vae")
vocoder_config = parsed_config.get("vocoder")
assert audio_config is not None, "Audio VAE config is required for audio VAE"
assert vocoder_config is not None, "Vocoder config is required for audio VAE"
return cls(autoencoder=audio_config, vocoder=vocoder_config)
class ModelDeviceManager:
"""Manages device placement and GPU residency for the composed model."""
def __init__(self, module: torch.nn.Module):
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.vae_offload_device()
self.patcher = comfy.model_patcher.ModelPatcher(module, load_device, offload_device)
def ensure_model_loaded(self) -> None:
comfy.model_management.free_memory(
self.patcher.model_size(),
self.patcher.load_device,
)
comfy.model_management.load_model_gpu(self.patcher)
def move_to_load_device(self, tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(self.patcher.load_device)
@property
def load_device(self):
return self.patcher.load_device
class AudioLatentNormalizer:
"""Applies per-channel statistics in patch space and restores original layout."""
def __init__(self, patchfier: AudioPatchifier, statistics_processor: torch.nn.Module):
self.patchifier = patchfier
self.statistics = statistics_processor
def normalize(self, latents: torch.Tensor) -> torch.Tensor:
channels = latents.shape[1]
freq = latents.shape[3]
patched, _ = self.patchifier.patchify(latents)
normalized = self.statistics.normalize(patched)
return self.patchifier.unpatchify(normalized, channels=channels, freq=freq)
def denormalize(self, latents: torch.Tensor) -> torch.Tensor:
channels = latents.shape[1]
freq = latents.shape[3]
patched, _ = self.patchifier.patchify(latents)
denormalized = self.statistics.un_normalize(patched)
return self.patchifier.unpatchify(denormalized, channels=channels, freq=freq)
class AudioPreprocessor:
"""Prepares raw waveforms for the autoencoder by matching training conditions."""
def __init__(self, target_sample_rate: int, mel_bins: int, mel_hop_length: int, n_fft: int):
self.target_sample_rate = target_sample_rate
self.mel_bins = mel_bins
self.mel_hop_length = mel_hop_length
self.n_fft = n_fft
def resample(self, waveform: torch.Tensor, source_rate: int) -> torch.Tensor:
if source_rate == self.target_sample_rate:
return waveform
return torchaudio.functional.resample(waveform, source_rate, self.target_sample_rate)
@staticmethod
def normalize_amplitude(
waveform: torch.Tensor, max_amplitude: float = 0.5, eps: float = 1e-5
) -> torch.Tensor:
waveform = waveform - waveform.mean(dim=2, keepdim=True)
peak = torch.max(torch.abs(waveform)) + eps
scale = peak.clamp(max=max_amplitude) / peak
return waveform * scale
def waveform_to_mel(
self, waveform: torch.Tensor, waveform_sample_rate: int, device
) -> torch.Tensor:
waveform = self.resample(waveform, waveform_sample_rate)
waveform = self.normalize_amplitude(waveform)
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=self.target_sample_rate,
n_fft=self.n_fft,
win_length=self.n_fft,
hop_length=self.mel_hop_length,
f_min=0.0,
f_max=self.target_sample_rate / 2.0,
n_mels=self.mel_bins,
window_fn=torch.hann_window,
center=True,
pad_mode="reflect",
power=1.0,
mel_scale="slaney",
norm="slaney",
).to(device)
mel = mel_transform(waveform)
mel = torch.log(torch.clamp(mel, min=1e-5))
return mel.permute(0, 1, 3, 2).contiguous()
class AudioVAE(torch.nn.Module):
"""High-level Audio VAE wrapper exposing encode and decode entry points."""
def __init__(self, state_dict: dict, metadata: dict):
super().__init__()
component_config = AudioVAEComponentConfig.from_metadata(metadata)
vae_sd = utils.state_dict_prefix_replace(state_dict, {"audio_vae.": ""}, filter_keys=True)
vocoder_sd = utils.state_dict_prefix_replace(state_dict, {"vocoder.": ""}, filter_keys=True)
self.autoencoder = CausalAudioAutoencoder(config=component_config.autoencoder)
self.vocoder = Vocoder(config=component_config.vocoder)
self.autoencoder.load_state_dict(vae_sd, strict=False)
self.vocoder.load_state_dict(vocoder_sd, strict=False)
autoencoder_config = self.autoencoder.get_config()
self.normalizer = AudioLatentNormalizer(
AudioPatchifier(
patch_size=1,
audio_latent_downsample_factor=LATENT_DOWNSAMPLE_FACTOR,
sample_rate=autoencoder_config["sampling_rate"],
hop_length=autoencoder_config["mel_hop_length"],
is_causal=autoencoder_config["is_causal"],
),
self.autoencoder.per_channel_statistics,
)
self.preprocessor = AudioPreprocessor(
target_sample_rate=autoencoder_config["sampling_rate"],
mel_bins=autoencoder_config["mel_bins"],
mel_hop_length=autoencoder_config["mel_hop_length"],
n_fft=autoencoder_config["n_fft"],
)
self.device_manager = ModelDeviceManager(self)
def encode(self, audio: dict) -> torch.Tensor:
"""Encode a waveform dictionary into normalized latent tensors."""
waveform = audio["waveform"]
waveform_sample_rate = audio["sample_rate"]
input_device = waveform.device
# Ensure that Audio VAE is loaded on the correct device.
self.device_manager.ensure_model_loaded()
waveform = self.device_manager.move_to_load_device(waveform)
expected_channels = self.autoencoder.encoder.in_channels
if waveform.shape[1] != expected_channels:
raise ValueError(
f"Input audio must have {expected_channels} channels, got {waveform.shape[1]}"
)
mel_spec = self.preprocessor.waveform_to_mel(
waveform, waveform_sample_rate, device=self.device_manager.load_device
)
latents = self.autoencoder.encode(mel_spec)
posterior = DiagonalGaussianDistribution(latents)
latent_mode = posterior.mode()
normalized = self.normalizer.normalize(latent_mode)
return normalized.to(input_device)
def decode(self, latents: torch.Tensor) -> torch.Tensor:
"""Decode normalized latent tensors into an audio waveform."""
original_shape = latents.shape
# Ensure that Audio VAE is loaded on the correct device.
self.device_manager.ensure_model_loaded()
latents = self.device_manager.move_to_load_device(latents)
latents = self.normalizer.denormalize(latents)
target_shape = self.target_shape_from_latents(original_shape)
mel_spec = self.autoencoder.decode(latents, target_shape=target_shape)
waveform = self.run_vocoder(mel_spec)
return self.device_manager.move_to_load_device(waveform)
def target_shape_from_latents(self, latents_shape):
batch, _, time, _ = latents_shape
target_length = time * LATENT_DOWNSAMPLE_FACTOR
if self.autoencoder.causality_axis != CausalityAxis.NONE:
target_length -= LATENT_DOWNSAMPLE_FACTOR - 1
return (
batch,
self.autoencoder.decoder.out_ch,
target_length,
self.autoencoder.mel_bins,
)
def num_of_latents_from_frames(self, frames_number: int, frame_rate: int) -> int:
return math.ceil((float(frames_number) / frame_rate) * self.latents_per_second)
def run_vocoder(self, mel_spec: torch.Tensor) -> torch.Tensor:
audio_channels = self.autoencoder.decoder.out_ch
vocoder_input = mel_spec.transpose(2, 3)
if audio_channels == 1:
vocoder_input = vocoder_input.squeeze(1)
elif audio_channels != 2:
raise ValueError(f"Unsupported audio_channels: {audio_channels}")
return self.vocoder(vocoder_input)
@property
def sample_rate(self) -> int:
return int(self.autoencoder.sampling_rate)
@property
def mel_hop_length(self) -> int:
return int(self.autoencoder.mel_hop_length)
@property
def mel_bins(self) -> int:
return int(self.autoencoder.mel_bins)
@property
def latent_channels(self) -> int:
return int(self.autoencoder.decoder.z_channels)
@property
def latent_frequency_bins(self) -> int:
return int(self.mel_bins // LATENT_DOWNSAMPLE_FACTOR)
@property
def latents_per_second(self) -> float:
return self.sample_rate / self.mel_hop_length / LATENT_DOWNSAMPLE_FACTOR
@property
def output_sample_rate(self) -> int:
output_rate = getattr(self.vocoder, "output_sample_rate", None)
if output_rate is not None:
return int(output_rate)
upsample_factor = getattr(self.vocoder, "upsample_factor", None)
if upsample_factor is None:
raise AttributeError(
"Vocoder is missing upsample_factor; cannot infer output sample rate"
)
return int(self.sample_rate * upsample_factor / self.mel_hop_length)
def memory_required(self, input_shape):
return self.device_manager.patcher.model_size()

View File

@ -0,0 +1,909 @@
from __future__ import annotations
import torch
from torch import nn
from torch.nn import functional as F
from typing import Optional
from enum import Enum
from .pixel_norm import PixelNorm
import comfy.ops
import logging
ops = comfy.ops.disable_weight_init
class StringConvertibleEnum(Enum):
"""
Base enum class that provides string-to-enum conversion functionality.
This mixin adds a str_to_enum() class method that handles conversion from
strings, None, or existing enum instances with case-insensitive matching.
"""
@classmethod
def str_to_enum(cls, value):
"""
Convert a string, enum instance, or None to the appropriate enum member.
Args:
value: Can be an enum instance of this class, a string, or None
Returns:
Enum member of this class
Raises:
ValueError: If the value cannot be converted to a valid enum member
"""
# Already an enum instance of this class
if isinstance(value, cls):
return value
# None maps to NONE member if it exists
if value is None:
if hasattr(cls, "NONE"):
return cls.NONE
raise ValueError(f"{cls.__name__} does not have a NONE member to map None to")
# String conversion (case-insensitive)
if isinstance(value, str):
value_lower = value.lower()
# Try to match against enum values
for member in cls:
# Handle members with None values
if member.value is None:
if value_lower == "none":
return member
# Handle members with string values
elif isinstance(member.value, str) and member.value.lower() == value_lower:
return member
# Build helpful error message with valid values
valid_values = []
for member in cls:
if member.value is None:
valid_values.append("none")
elif isinstance(member.value, str):
valid_values.append(member.value)
raise ValueError(f"Invalid {cls.__name__} string: '{value}'. " f"Valid values are: {valid_values}")
raise ValueError(
f"Cannot convert type {type(value).__name__} to {cls.__name__} enum. "
f"Expected string, None, or {cls.__name__} instance."
)
class AttentionType(StringConvertibleEnum):
"""Enum for specifying the attention mechanism type."""
VANILLA = "vanilla"
LINEAR = "linear"
NONE = "none"
class CausalityAxis(StringConvertibleEnum):
"""Enum for specifying the causality axis in causal convolutions."""
NONE = None
WIDTH = "width"
HEIGHT = "height"
WIDTH_COMPATIBILITY = "width-compatibility"
def Normalize(in_channels, *, num_groups=32, normtype="group"):
if normtype == "group":
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
elif normtype == "pixel":
return PixelNorm(dim=1, eps=1e-6)
else:
raise ValueError(f"Invalid normalization type: {normtype}")
class CausalConv2d(nn.Module):
"""
A causal 2D convolution.
This layer ensures that the output at time `t` only depends on inputs
at time `t` and earlier. It achieves this by applying asymmetric padding
to the time dimension (width) before the convolution.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
causality_axis: CausalityAxis = CausalityAxis.HEIGHT,
):
super().__init__()
self.causality_axis = causality_axis
# Ensure kernel_size and dilation are tuples
kernel_size = nn.modules.utils._pair(kernel_size)
dilation = nn.modules.utils._pair(dilation)
# Calculate padding dimensions
pad_h = (kernel_size[0] - 1) * dilation[0]
pad_w = (kernel_size[1] - 1) * dilation[1]
# The padding tuple for F.pad is (pad_left, pad_right, pad_top, pad_bottom)
match self.causality_axis:
case CausalityAxis.NONE:
self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)
case CausalityAxis.WIDTH | CausalityAxis.WIDTH_COMPATIBILITY:
self.padding = (pad_w, 0, pad_h // 2, pad_h - pad_h // 2)
case CausalityAxis.HEIGHT:
self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h, 0)
case _:
raise ValueError(f"Invalid causality_axis: {causality_axis}")
# The internal convolution layer uses no padding, as we handle it manually
self.conv = ops.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
)
def forward(self, x):
# Apply causal padding before convolution
x = F.pad(x, self.padding)
return self.conv(x)
def make_conv2d(
in_channels,
out_channels,
kernel_size,
stride=1,
padding=None,
dilation=1,
groups=1,
bias=True,
causality_axis: Optional[CausalityAxis] = None,
):
"""
Create a 2D convolution layer that can be either causal or non-causal.
Args:
in_channels: Number of input channels
out_channels: Number of output channels
kernel_size: Size of the convolution kernel
stride: Convolution stride
padding: Padding (if None, will be calculated based on causal flag)
dilation: Dilation rate
groups: Number of groups for grouped convolution
bias: Whether to use bias
causality_axis: Dimension along which to apply causality.
Returns:
Either a regular Conv2d or CausalConv2d layer
"""
if causality_axis is not None:
# For causal convolution, padding is handled internally by CausalConv2d
return CausalConv2d(in_channels, out_channels, kernel_size, stride, dilation, groups, bias, causality_axis)
else:
# For non-causal convolution, use symmetric padding if not specified
if padding is None:
if isinstance(kernel_size, int):
padding = kernel_size // 2
else:
padding = tuple(k // 2 for k in kernel_size)
return ops.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.HEIGHT):
super().__init__()
self.with_conv = with_conv
self.causality_axis = causality_axis
if self.with_conv:
self.conv = make_conv2d(in_channels, in_channels, kernel_size=3, stride=1, causality_axis=causality_axis)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
# Drop FIRST element in the causal axis to undo encoder's padding, while keeping the length 1 + 2 * n.
# For example, if the input is [0, 1, 2], after interpolation, the output is [0, 0, 1, 1, 2, 2].
# The causal convolution will pad the first element as [-, -, 0, 0, 1, 1, 2, 2],
# So the output elements rely on the following windows:
# 0: [-,-,0]
# 1: [-,0,0]
# 2: [0,0,1]
# 3: [0,1,1]
# 4: [1,1,2]
# 5: [1,2,2]
# Notice that the first and second elements in the output rely only on the first element in the input,
# while all other elements rely on two elements in the input.
# So we can drop the first element to undo the padding (rather than the last element).
# This is a no-op for non-causal convolutions.
match self.causality_axis:
case CausalityAxis.NONE:
pass # x remains unchanged
case CausalityAxis.HEIGHT:
x = x[:, :, 1:, :]
case CausalityAxis.WIDTH:
x = x[:, :, :, 1:]
case CausalityAxis.WIDTH_COMPATIBILITY:
pass # x remains unchanged
case _:
raise ValueError(f"Invalid causality_axis: {self.causality_axis}")
return x
class Downsample(nn.Module):
"""
A downsampling layer that can use either a strided convolution
or average pooling. Supports standard and causal padding for the
convolutional mode.
"""
def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.WIDTH):
super().__init__()
self.with_conv = with_conv
self.causality_axis = causality_axis
if self.causality_axis != CausalityAxis.NONE and not self.with_conv:
raise ValueError("causality is only supported when `with_conv=True`.")
if self.with_conv:
# Do time downsampling here
# no asymmetric padding in torch conv, must do it ourselves
self.conv = ops.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
if self.with_conv:
# (pad_left, pad_right, pad_top, pad_bottom)
match self.causality_axis:
case CausalityAxis.NONE:
pad = (0, 1, 0, 1)
case CausalityAxis.WIDTH:
pad = (2, 0, 0, 1)
case CausalityAxis.HEIGHT:
pad = (0, 1, 2, 0)
case CausalityAxis.WIDTH_COMPATIBILITY:
pad = (1, 0, 0, 1)
case _:
raise ValueError(f"Invalid causality_axis: {self.causality_axis}")
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
# This branch is only taken if with_conv=False, which implies causality_axis is NONE.
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout,
temb_channels=512,
norm_type="group",
causality_axis: CausalityAxis = CausalityAxis.HEIGHT,
):
super().__init__()
self.causality_axis = causality_axis
if self.causality_axis != CausalityAxis.NONE and norm_type == "group":
raise ValueError("Causal ResnetBlock with GroupNorm is not supported.")
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, normtype=norm_type)
self.non_linearity = nn.SiLU()
self.conv1 = make_conv2d(in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis)
if temb_channels > 0:
self.temb_proj = ops.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels, normtype=norm_type)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = make_conv2d(out_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = make_conv2d(
in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis
)
else:
self.nin_shortcut = make_conv2d(
in_channels, out_channels, kernel_size=1, stride=1, causality_axis=causality_axis
)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = self.non_linearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(self.non_linearity(temb))[:, :, None, None]
h = self.norm2(h)
h = self.non_linearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels, norm_type="group"):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels, normtype=norm_type)
self.q = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w).contiguous()
q = q.permute(0, 2, 1).contiguous() # b,hw,c
k = k.reshape(b, c, h * w).contiguous() # b,c,hw
w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w).contiguous()
w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, h, w).contiguous()
h_ = self.proj_out(h_)
return x + h_
def make_attn(in_channels, attn_type="vanilla", norm_type="group"):
# Convert string to enum if needed
attn_type = AttentionType.str_to_enum(attn_type)
if attn_type != AttentionType.NONE:
logging.info(f"making attention of type '{attn_type.value}' with {in_channels} in_channels")
else:
logging.info(f"making identity attention with {in_channels} in_channels")
match attn_type:
case AttentionType.VANILLA:
return AttnBlock(in_channels, norm_type=norm_type)
case AttentionType.NONE:
return nn.Identity(in_channels)
case AttentionType.LINEAR:
raise NotImplementedError(f"Attention type {attn_type.value} is not supported yet.")
case _:
raise ValueError(f"Unknown attention type: {attn_type}")
class Encoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
double_z=True,
attn_type="vanilla",
mid_block_add_attention=True,
norm_type="group",
causality_axis=CausalityAxis.WIDTH.value,
**ignore_kwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.z_channels = z_channels
self.double_z = double_z
self.norm_type = norm_type
# Convert string to enum if needed (for config loading)
causality_axis = CausalityAxis.str_to_enum(causality_axis)
self.attn_type = AttentionType.str_to_enum(attn_type)
# downsampling
self.conv_in = make_conv2d(
in_channels,
self.ch,
kernel_size=3,
stride=1,
causality_axis=causality_axis,
)
self.non_linearity = nn.SiLU()
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv, causality_axis=causality_axis)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
if mid_block_add_attention:
self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)
else:
self.mid.attn_1 = nn.Identity()
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
# end
self.norm_out = Normalize(block_in, normtype=self.norm_type)
self.conv_out = make_conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
causality_axis=causality_axis,
)
def forward(self, x):
"""
Forward pass through the encoder.
Args:
x: Input tensor of shape [batch, channels, time, n_mels]
Returns:
Encoded latent representation
"""
feature_maps = [self.conv_in(x)]
# Process each resolution level (from high to low resolution)
for resolution_level in range(self.num_resolutions):
# Apply residual blocks at current resolution level
for block_idx in range(self.num_res_blocks):
# Apply ResNet block with optional timestep embedding
current_features = self.down[resolution_level].block[block_idx](feature_maps[-1], temb=None)
# Apply attention if configured for this resolution level
if len(self.down[resolution_level].attn) > 0:
current_features = self.down[resolution_level].attn[block_idx](current_features)
# Store processed features
feature_maps.append(current_features)
# Downsample spatial dimensions (except at the final resolution level)
if resolution_level != self.num_resolutions - 1:
downsampled_features = self.down[resolution_level].downsample(feature_maps[-1])
feature_maps.append(downsampled_features)
# === MIDDLE PROCESSING PHASE ===
# Take the lowest resolution features for middle processing
bottleneck_features = feature_maps[-1]
# Apply first middle ResNet block
bottleneck_features = self.mid.block_1(bottleneck_features, temb=None)
# Apply middle attention block
bottleneck_features = self.mid.attn_1(bottleneck_features)
# Apply second middle ResNet block
bottleneck_features = self.mid.block_2(bottleneck_features, temb=None)
# === OUTPUT PHASE ===
# Normalize the bottleneck features
output_features = self.norm_out(bottleneck_features)
# Apply non-linearity (SiLU activation)
output_features = self.non_linearity(output_features)
# Final convolution to produce latent representation
# [batch, channels, time, n_mels] -> [batch, 2 * z_channels if double_z else z_channels, time, n_mels]
return self.conv_out(output_features)
class Decoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
tanh_out=False,
attn_type="vanilla",
mid_block_add_attention=True,
norm_type="group",
causality_axis=CausalityAxis.WIDTH.value,
**ignorekwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.out_ch = out_ch
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
self.norm_type = norm_type
self.z_channels = z_channels
# Convert string to enum if needed (for config loading)
causality_axis = CausalityAxis.str_to_enum(causality_axis)
self.attn_type = AttentionType.str_to_enum(attn_type)
# compute block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = make_conv2d(z_channels, block_in, kernel_size=3, stride=1, causality_axis=causality_axis)
self.non_linearity = nn.SiLU()
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
if mid_block_add_attention:
self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)
else:
self.mid.attn_1 = nn.Identity()
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv, causality_axis=causality_axis)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in, normtype=self.norm_type)
self.conv_out = make_conv2d(block_in, out_ch, kernel_size=3, stride=1, causality_axis=causality_axis)
def _adjust_output_shape(self, decoded_output, target_shape):
"""
Adjust output shape to match target dimensions for variable-length audio.
This function handles the common case where decoded audio spectrograms need to be
resized to match a specific target shape.
Args:
decoded_output: Tensor of shape (batch, channels, time, frequency)
target_shape: Target shape tuple (batch, channels, time, frequency)
Returns:
Tensor adjusted to match target_shape exactly
"""
# Current output shape: (batch, channels, time, frequency)
_, _, current_time, current_freq = decoded_output.shape
_, target_channels, target_time, target_freq = target_shape
# Step 1: Crop first to avoid exceeding target dimensions
decoded_output = decoded_output[
:, :target_channels, : min(current_time, target_time), : min(current_freq, target_freq)
]
# Step 2: Calculate padding needed for time and frequency dimensions
time_padding_needed = target_time - decoded_output.shape[2]
freq_padding_needed = target_freq - decoded_output.shape[3]
# Step 3: Apply padding if needed
if time_padding_needed > 0 or freq_padding_needed > 0:
# PyTorch padding format: (pad_left, pad_right, pad_top, pad_bottom)
# For audio: pad_left/right = frequency, pad_top/bottom = time
padding = (
0,
max(freq_padding_needed, 0), # frequency padding (left, right)
0,
max(time_padding_needed, 0), # time padding (top, bottom)
)
decoded_output = F.pad(decoded_output, padding)
# Step 4: Final safety crop to ensure exact target shape
decoded_output = decoded_output[:, :target_channels, :target_time, :target_freq]
return decoded_output
def get_config(self):
return {
"ch": self.ch,
"out_ch": self.out_ch,
"ch_mult": self.ch_mult,
"num_res_blocks": self.num_res_blocks,
"in_channels": self.in_channels,
"resolution": self.resolution,
"z_channels": self.z_channels,
}
def forward(self, latent_features, target_shape=None):
"""
Decode latent features back to audio spectrograms.
Args:
latent_features: Encoded latent representation of shape (batch, channels, height, width)
target_shape: Optional target output shape (batch, channels, time, frequency)
If provided, output will be cropped/padded to match this shape
Returns:
Reconstructed audio spectrogram of shape (batch, channels, time, frequency)
"""
assert target_shape is not None, "Target shape is required for CausalAudioAutoencoder Decoder"
# Transform latent features to decoder's internal feature dimension
hidden_features = self.conv_in(latent_features)
# Middle processing
hidden_features = self.mid.block_1(hidden_features, temb=None)
hidden_features = self.mid.attn_1(hidden_features)
hidden_features = self.mid.block_2(hidden_features, temb=None)
# Upsampling
# Progressively increase spatial resolution from lowest to highest
for resolution_level in reversed(range(self.num_resolutions)):
# Apply residual blocks at current resolution level
for block_index in range(self.num_res_blocks + 1):
hidden_features = self.up[resolution_level].block[block_index](hidden_features, temb=None)
if len(self.up[resolution_level].attn) > 0:
hidden_features = self.up[resolution_level].attn[block_index](hidden_features)
if resolution_level != 0:
hidden_features = self.up[resolution_level].upsample(hidden_features)
# Output
if self.give_pre_end:
# Return intermediate features before final processing (for debugging/analysis)
decoded_output = hidden_features
else:
# Standard output path: normalize, activate, and convert to output channels
# Final normalization layer
hidden_features = self.norm_out(hidden_features)
# Apply SiLU (Swish) activation function
hidden_features = self.non_linearity(hidden_features)
# Final convolution to map to output channels (typically 2 for stereo audio)
decoded_output = self.conv_out(hidden_features)
# Optional tanh activation to bound output values to [-1, 1] range
if self.tanh_out:
decoded_output = torch.tanh(decoded_output)
# Adjust shape for audio data
if target_shape is not None:
decoded_output = self._adjust_output_shape(decoded_output, target_shape)
return decoded_output
class processor(nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("std-of-means", torch.empty(128))
self.register_buffer("mean-of-means", torch.empty(128))
def un_normalize(self, x):
return (x * self.get_buffer("std-of-means").to(x)) + self.get_buffer("mean-of-means").to(x)
def normalize(self, x):
return (x - self.get_buffer("mean-of-means").to(x)) / self.get_buffer("std-of-means").to(x)
class CausalAudioAutoencoder(nn.Module):
def __init__(self, config=None):
super().__init__()
if config is None:
config = self._guess_config()
# Extract encoder and decoder configs from the new format
model_config = config.get("model", {}).get("params", {})
variables_config = config.get("variables", {})
self.sampling_rate = variables_config.get(
"sampling_rate",
model_config.get("sampling_rate", config.get("sampling_rate", 16000)),
)
encoder_config = model_config.get("encoder", model_config.get("ddconfig", {}))
decoder_config = model_config.get("decoder", encoder_config)
# Load mel spectrogram parameters
self.mel_bins = encoder_config.get("mel_bins", 64)
self.mel_hop_length = model_config.get("preprocessing", {}).get("stft", {}).get("hop_length", 160)
self.n_fft = model_config.get("preprocessing", {}).get("stft", {}).get("filter_length", 1024)
# Store causality configuration at VAE level (not just in encoder internals)
causality_axis_value = encoder_config.get("causality_axis", CausalityAxis.WIDTH.value)
self.causality_axis = CausalityAxis.str_to_enum(causality_axis_value)
self.is_causal = self.causality_axis == CausalityAxis.HEIGHT
self.encoder = Encoder(**encoder_config)
self.decoder = Decoder(**decoder_config)
self.per_channel_statistics = processor()
def _guess_config(self):
encoder_config = {
# Required parameters - based on ltx-video-av-1679000 model metadata
"ch": 128,
"out_ch": 8,
"ch_mult": [1, 2, 4], # Based on metadata: [1, 2, 4] not [1, 2, 4, 8]
"num_res_blocks": 2,
"attn_resolutions": [], # Based on metadata: empty list, no attention
"dropout": 0.0,
"resamp_with_conv": True,
"in_channels": 2, # stereo
"resolution": 256,
"z_channels": 8,
"double_z": True,
"attn_type": "vanilla",
"mid_block_add_attention": False, # Based on metadata: false
"norm_type": "pixel",
"causality_axis": "height", # Based on metadata
"mel_bins": 64, # Based on metadata: mel_bins = 64
}
decoder_config = {
# Inherits encoder config, can override specific params
**encoder_config,
"out_ch": 2, # Stereo audio output (2 channels)
"give_pre_end": False,
"tanh_out": False,
}
config = {
"_class_name": "CausalAudioAutoencoder",
"sampling_rate": 16000,
"model": {
"params": {
"encoder": encoder_config,
"decoder": decoder_config,
}
},
}
return config
def get_config(self):
return {
"sampling_rate": self.sampling_rate,
"mel_bins": self.mel_bins,
"mel_hop_length": self.mel_hop_length,
"n_fft": self.n_fft,
"causality_axis": self.causality_axis.value,
"is_causal": self.is_causal,
}
def encode(self, x):
return self.encoder(x)
def decode(self, x, target_shape=None):
return self.decoder(x, target_shape=target_shape)

View File

@ -0,0 +1,213 @@
import torch
import torch.nn.functional as F
import torch.nn as nn
import comfy.ops
import numpy as np
ops = comfy.ops.disable_weight_init
LRELU_SLOPE = 0.1
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList(
[
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
),
]
)
self.convs2 = nn.ModuleList(
[
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
),
]
)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList(
[
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
),
]
)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
class Vocoder(torch.nn.Module):
"""
Vocoder model for synthesizing audio from spectrograms, based on: https://github.com/jik876/hifi-gan.
"""
def __init__(self, config=None):
super(Vocoder, self).__init__()
if config is None:
config = self.get_default_config()
resblock_kernel_sizes = config.get("resblock_kernel_sizes", [3, 7, 11])
upsample_rates = config.get("upsample_rates", [6, 5, 2, 2, 2])
upsample_kernel_sizes = config.get("upsample_kernel_sizes", [16, 15, 8, 4, 4])
resblock_dilation_sizes = config.get("resblock_dilation_sizes", [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_initial_channel = config.get("upsample_initial_channel", 1024)
stereo = config.get("stereo", True)
resblock = config.get("resblock", "1")
self.output_sample_rate = config.get("output_sample_rate")
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
in_channels = 128 if stereo else 64
self.conv_pre = ops.Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)
resblock_class = ResBlock1 if resblock == "1" else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
ops.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock_class(ch, k, d))
out_channels = 2 if stereo else 1
self.conv_post = ops.Conv1d(ch, out_channels, 7, 1, padding=3)
self.upsample_factor = np.prod([self.ups[i].stride[0] for i in range(len(self.ups))])
def get_default_config(self):
"""Generate default configuration for the vocoder."""
config = {
"resblock_kernel_sizes": [3, 7, 11],
"upsample_rates": [6, 5, 2, 2, 2],
"upsample_kernel_sizes": [16, 15, 8, 4, 4],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"upsample_initial_channel": 1024,
"stereo": True,
"resblock": "1",
}
return config
def forward(self, x):
"""
Forward pass of the vocoder.
Args:
x: Input spectrogram tensor. Can be:
- 3D: (batch_size, channels, time_steps) for mono
- 4D: (batch_size, 2, channels, time_steps) for stereo
Returns:
Audio tensor of shape (batch_size, out_channels, audio_length)
"""
if x.dim() == 4: # stereo
assert x.shape[1] == 2, "Input must have 2 channels for stereo"
x = torch.cat((x[:, 0, :, :], x[:, 1, :, :]), dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x

View File

@ -20,6 +20,7 @@ import comfy.ldm.hunyuan3dv2_1
import comfy.ldm.hunyuan3dv2_1.hunyuandit
import torch
import logging
import comfy.ldm.lightricks.av_model
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.cascade.stage_c import StageC
from comfy.ldm.cascade.stage_b import StageB
@ -946,7 +947,7 @@ class GenmoMochi(BaseModel):
class LTXV(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@ -977,6 +978,60 @@ class LTXV(BaseModel):
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class LTXAV(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.av_model.LTXAVModel) #TODO
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
audio_denoise_mask = None
if denoise_mask is not None and "latent_shapes" in kwargs:
denoise_mask = utils.unpack_latents(denoise_mask, kwargs["latent_shapes"])
if len(denoise_mask) > 1:
audio_denoise_mask = denoise_mask[1]
denoise_mask = denoise_mask[0]
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
if audio_denoise_mask is not None:
out["audio_denoise_mask"] = comfy.conds.CONDRegular(audio_denoise_mask)
keyframe_idxs = kwargs.get("keyframe_idxs", None)
if keyframe_idxs is not None:
out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs)
latent_shapes = kwargs.get("latent_shapes", None)
if latent_shapes is not None:
out['latent_shapes'] = comfy.conds.CONDConstant(latent_shapes)
return out
def process_timestep(self, timestep, x, denoise_mask=None, audio_denoise_mask=None, **kwargs):
v_timestep = timestep
a_timestep = timestep
if denoise_mask is not None:
v_timestep = self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0]
if audio_denoise_mask is not None:
a_timestep = self.diffusion_model.a_patchifier.patchify(((audio_denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (audio_denoise_mask.ndim - 1)))[:, :1, :, :1])[0]
return v_timestep, a_timestep
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class HunyuanVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)

View File

@ -305,7 +305,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxv"
dit_config["image_model"] = "ltxav" if f'{key_prefix}audio_adaln_single.linear.weight' in state_dict_keys else "ltxv"
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape
dit_config["attention_head_dim"] = shape[0] // 32

View File

@ -1041,7 +1041,8 @@ class TEModel(Enum):
MISTRAL3_24B_PRUNED_FLUX2 = 15
QWEN3_4B = 16
QWEN3_2B = 17
JINA_CLIP_2 = 18
GEMMA_3_12B = 18
JINA_CLIP_2 = 19
def detect_te_model(sd):
@ -1067,6 +1068,8 @@ def detect_te_model(sd):
return TEModel.BYT5_SMALL_GLYPH
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
if 'model.layers.47.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_12B
if 'model.layers.0.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_4B
return TEModel.GEMMA_2_2B
@ -1271,6 +1274,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.KANDINSKY5_IMAGE:
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxav_te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXAVGemmaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.NEWBIE:
clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer

View File

@ -836,6 +836,21 @@ class LTXV(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect))
class LTXAV(LTXV):
unet_config = {
"image_model": "ltxav",
}
latent_format = latent_formats.LTXAV
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 0.055 # TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXAV(self, device=device)
return out
class HunyuanVideo(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan_video",
@ -1536,6 +1551,6 @@ class Kandinsky5Image(Kandinsky5):
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5]
models += [SVD_img2vid]

View File

@ -7,6 +7,7 @@ import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ldm.common_dit
import comfy.clip_model
from . import qwen_vl
@ -188,6 +189,31 @@ class Gemma3_4B_Config:
rope_scale = [8.0, 1.0]
final_norm: bool = True
@dataclass
class Gemma3_12B_Config:
vocab_size: int = 262208
hidden_size: int = 3840
intermediate_size: int = 15360
num_hidden_layers: int = 48
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 131072
rms_norm_eps: float = 1e-6
rope_theta = [1000000.0, 10000.0]
transformer_type: str = "gemma3"
head_dim = 256
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14}
mm_tokens_per_image = 256
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
super().__init__()
@ -520,6 +546,41 @@ class Llama2_(nn.Module):
return x, intermediate
class Gemma3MultiModalProjector(torch.nn.Module):
def __init__(self, config, dtype, device, operations):
super().__init__()
self.mm_input_projection_weight = nn.Parameter(
torch.empty(config.vision_config["hidden_size"], config.hidden_size, device=device, dtype=dtype)
)
self.mm_soft_emb_norm = RMSNorm(config.vision_config["hidden_size"], eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
self.patches_per_image = int(config.vision_config["image_size"] // config.vision_config["patch_size"])
self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
self.kernel_size = self.patches_per_image // self.tokens_per_side
self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size)
def forward(self, vision_outputs: torch.Tensor):
batch_size, _, seq_length = vision_outputs.shape
reshaped_vision_outputs = vision_outputs.transpose(1, 2)
reshaped_vision_outputs = reshaped_vision_outputs.reshape(
batch_size, seq_length, self.patches_per_image, self.patches_per_image
)
reshaped_vision_outputs = reshaped_vision_outputs.contiguous()
pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
pooled_vision_outputs = pooled_vision_outputs.flatten(2)
pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)
normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs)
projected_vision_outputs = torch.matmul(normed_vision_outputs, comfy.model_management.cast_to_device(self.mm_input_projection_weight, device=normed_vision_outputs.device, dtype=normed_vision_outputs.dtype))
return projected_vision_outputs.type_as(vision_outputs)
class BaseLlama:
def get_input_embeddings(self):
return self.model.embed_tokens
@ -636,3 +697,21 @@ class Gemma3_4B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Gemma3_12B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Gemma3_12B_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.multi_modal_projector = Gemma3MultiModalProjector(config, dtype, device, operations)
self.vision_model = comfy.clip_model.CLIPVision(config.vision_config, dtype, device, operations)
self.dtype = dtype
self.image_size = config.vision_config["image_size"]
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image = comfy.clip_model.clip_preprocess(embed["data"], size=self.image_size, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True)
return self.multi_modal_projector(self.vision_model(image.to(device, dtype=torch.float32))[0]), None
return None, None

View File

@ -1,7 +1,11 @@
from comfy import sd1_clip
import os
from transformers import T5TokenizerFast
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.genmo
from comfy.ldm.lightricks.embeddings_connector import Embeddings1DConnector
import torch
import comfy.utils
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@ -16,3 +20,110 @@ class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):
def ltxv_te(*args, **kwargs):
return comfy.text_encoders.genmo.mochi_te(*args, **kwargs)
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_12b", tokenizer=Gemma3_12BTokenizer)
class Gemma3_12BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template="{}", image_embeds=None, **kwargs):
text = llama_template.format(text)
text_tokens = super().tokenize_with_weights(text, return_word_ids)
embed_count = 0
for k in text_tokens:
tt = text_tokens[k]
for r in tt:
for i in range(len(r)):
if r[i][0] == 262144:
if image_embeds is not None and embed_count < image_embeds.shape[0]:
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return text_tokens
class LTXAVTEModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
self.dtypes = set()
self.dtypes.add(dtype)
self.gemma3_12b = Gemma3_12BModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None)
self.dtypes.add(dtype_llama)
operations = self.gemma3_12b.operations # TODO
self.text_embedding_projection = operations.Linear(3840 * 49, 3840, bias=False, dtype=dtype, device=device)
self.audio_embeddings_connector = Embeddings1DConnector(
split_rope=True,
double_precision_rope=True,
dtype=dtype,
device=device,
operations=operations,
)
self.video_embeddings_connector = Embeddings1DConnector(
split_rope=True,
double_precision_rope=True,
dtype=dtype,
device=device,
operations=operations,
)
def set_clip_options(self, options):
self.gemma3_12b.set_clip_options(options)
def reset_clip_options(self):
self.gemma3_12b.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs = token_weight_pairs["gemma3_12b"]
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
out_device = out.device
out = out.movedim(1, -1).to(self.text_embedding_projection.weight.device)
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
out = out.reshape((out.shape[0], out.shape[1], -1))
out = self.text_embedding_projection(out)
out_vid = self.video_embeddings_connector(out)[0]
out_audio = self.audio_embeddings_connector(out)[0]
out = torch.concat((out_vid, out_audio), dim=-1)
return out.to(out_device), pooled
def load_sd(self, sd):
if "model.layers.47.self_attn.q_norm.weight" in sd:
return self.gemma3_12b.load_sd(sd)
else:
sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True)
if len(sdo) == 0:
sdo = sd
return self.load_state_dict(sdo, strict=False)
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
class LTXAVTEModel_(LTXAVTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return LTXAVTEModel_

View File

@ -1198,7 +1198,7 @@ def unpack_latents(combined_latent, latent_shapes):
combined_latent = combined_latent[:, :, cut:]
output_tensors.append(tens.reshape([tens.shape[0]] + list(shape)[1:]))
else:
output_tensors = combined_latent
output_tensors = [combined_latent]
return output_tensors
def detect_layer_quantization(state_dict, prefix):

View File

@ -112,7 +112,7 @@ class VAEDecodeAudio(IO.ComfyNode):
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
return IO.NodeOutput({"waveform": audio, "sample_rate": 44100})
return IO.NodeOutput({"waveform": audio, "sample_rate": 44100 if "sample_rate" not in samples else samples["sample_rate"]})
decode = execute # TODO: remove

View File

@ -5,7 +5,9 @@ import comfy.model_management
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
from comfy.ldm.hunyuan_video.upsampler import HunyuanVideo15SRModel
from comfy.ldm.lightricks.latent_upsampler import LatentUpsampler
import folder_paths
import json
class CLIPTextEncodeHunyuanDiT(io.ComfyNode):
@classmethod
@ -186,7 +188,7 @@ class LatentUpscaleModelLoader(io.ComfyNode):
@classmethod
def execute(cls, model_name) -> io.NodeOutput:
model_path = folder_paths.get_full_path_or_raise("latent_upscale_models", model_name)
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
sd, metadata = comfy.utils.load_torch_file(model_path, safe_load=True, return_metadata=True)
if "blocks.0.block.0.conv.weight" in sd:
config = {
@ -197,6 +199,8 @@ class LatentUpscaleModelLoader(io.ComfyNode):
"global_residual": False,
}
model_type = "720p"
model = HunyuanVideo15SRModel(model_type, config)
model.load_sd(sd)
elif "up.0.block.0.conv1.conv.weight" in sd:
sd = {key.replace("nin_shortcut", "nin_shortcut.conv", 1): value for key, value in sd.items()}
config = {
@ -205,9 +209,12 @@ class LatentUpscaleModelLoader(io.ComfyNode):
"block_out_channels": tuple(sd[f"up.{i}.block.0.conv1.conv.weight"].shape[0] for i in range(len([k for k in sd.keys() if k.startswith("up.") and k.endswith(".block.0.conv1.conv.weight")]))),
}
model_type = "1080p"
model = HunyuanVideo15SRModel(model_type, config)
model.load_sd(sd)
model = HunyuanVideo15SRModel(model_type, config)
model.load_sd(sd)
elif "post_upsample_res_blocks.0.conv2.bias" in sd:
config = json.loads(metadata["config"])
model = LatentUpsampler.from_config(config).to(dtype=comfy.model_management.vae_dtype(allowed_dtypes=[torch.bfloat16, torch.float32]))
model.load_state_dict(sd)
return io.NodeOutput(model)

View File

@ -81,6 +81,59 @@ class LTXVImgToVideo(io.ComfyNode):
generate = execute # TODO: remove
class LTXVImgToVideoInplace(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LTXVImgToVideoInplace",
category="conditioning/video_models",
inputs=[
io.Vae.Input("vae"),
io.Image.Input("image"),
io.Latent.Input("latent"),
io.Float.Input("strength", default=1.0, min=0.0, max=1.0),
io.Boolean.Input("bypass", default=False, tooltip="Bypass the conditioning.")
],
outputs=[
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, vae, image, latent, strength, bypass=False) -> io.NodeOutput:
if bypass:
return (latent,)
samples = latent["samples"]
_, height_scale_factor, width_scale_factor = (
vae.downscale_index_formula
)
batch, _, latent_frames, latent_height, latent_width = samples.shape
width = latent_width * width_scale_factor
height = latent_height * height_scale_factor
if image.shape[1] != height or image.shape[2] != width:
pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
else:
pixels = image
encode_pixels = pixels[:, :, :, :3]
t = vae.encode(encode_pixels)
samples[:, :, :t.shape[2]] = t
conditioning_latent_frames_mask = torch.ones(
(batch, 1, latent_frames, 1, 1),
dtype=torch.float32,
device=samples.device,
)
conditioning_latent_frames_mask[:, :, :t.shape[2]] = 1.0 - strength
return io.NodeOutput({"samples": samples, "noise_mask": conditioning_latent_frames_mask})
generate = execute # TODO: remove
def conditioning_get_any_value(conditioning, key, default=None):
for t in conditioning:
if key in t[1]:
@ -106,12 +159,12 @@ def get_keyframe_idxs(cond):
keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None)
if keyframe_idxs is None:
return None, 0
num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0]
# keyframe_idxs contains start/end positions (last dimension), checking for unqiue values only for start
num_keyframes = torch.unique(keyframe_idxs[:, 0, :, 0]).shape[0]
return keyframe_idxs, num_keyframes
class LTXVAddGuide(io.ComfyNode):
NUM_PREFIX_FRAMES = 2
PATCHIFIER = SymmetricPatchifier(1)
PATCHIFIER = SymmetricPatchifier(1, start_end=True)
@classmethod
def define_schema(cls):
@ -182,26 +235,35 @@ class LTXVAddGuide(io.ComfyNode):
return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs})
@classmethod
def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors):
_, latent_idx = cls.get_latent_index(
cond=positive,
latent_length=latent_image.shape[2],
guide_length=guiding_latent.shape[2],
frame_idx=frame_idx,
scale_factors=scale_factors,
)
noise_mask[:, :, latent_idx:latent_idx + guiding_latent.shape[2]] = 1.0
def append_keyframe(cls, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors, guide_mask=None, in_channels=128):
if latent_image.shape[1] != in_channels or guiding_latent.shape[1] != in_channels:
raise ValueError("Adding guide to a combined AV latent is not supported.")
positive = cls.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors)
negative = cls.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors)
mask = torch.full(
(noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,
)
if guide_mask is not None:
target_h = max(noise_mask.shape[3], guide_mask.shape[3])
target_w = max(noise_mask.shape[4], guide_mask.shape[4])
if noise_mask.shape[3] == 1 or noise_mask.shape[4] == 1:
noise_mask = noise_mask.expand(-1, -1, -1, target_h, target_w)
if guide_mask.shape[3] == 1 or guide_mask.shape[4] == 1:
guide_mask = guide_mask.expand(-1, -1, -1, target_h, target_w)
mask = guide_mask - strength
else:
mask = torch.full(
(noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]),
1.0 - strength,
dtype=noise_mask.dtype,
device=noise_mask.device,
)
# This solves audio video combined latent case where latent_image has audio latent concatenated
# in channel dimension with video latent. The solution is to pad guiding latent accordingly.
if latent_image.shape[1] > guiding_latent.shape[1]:
pad_len = latent_image.shape[1] - guiding_latent.shape[1]
guiding_latent = torch.nn.functional.pad(guiding_latent, pad=(0, 0, 0, 0, 0, 0, 0, pad_len), value=0)
latent_image = torch.cat([latent_image, guiding_latent], dim=2)
noise_mask = torch.cat([noise_mask, mask], dim=2)
return positive, negative, latent_image, noise_mask
@ -238,33 +300,17 @@ class LTXVAddGuide(io.ComfyNode):
frame_idx, latent_idx = cls.get_latent_index(positive, latent_length, len(image), frame_idx, scale_factors)
assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence."
num_prefix_frames = min(cls.NUM_PREFIX_FRAMES, t.shape[2])
positive, negative, latent_image, noise_mask = cls.append_keyframe(
positive,
negative,
frame_idx,
latent_image,
noise_mask,
t[:, :, :num_prefix_frames],
t,
strength,
scale_factors,
)
latent_idx += num_prefix_frames
t = t[:, :, num_prefix_frames:]
if t.shape[2] == 0:
return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask})
latent_image, noise_mask = cls.replace_latent_frames(
latent_image,
noise_mask,
t,
latent_idx,
strength,
)
return io.NodeOutput(positive, negative, {"samples": latent_image, "noise_mask": noise_mask})
generate = execute # TODO: remove
@ -507,18 +553,90 @@ class LTXVPreprocess(io.ComfyNode):
preprocess = execute # TODO: remove
import comfy.nested_tensor
class LTXVConcatAVLatent(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LTXVConcatAVLatent",
category="latent/video/ltxv",
inputs=[
io.Latent.Input("video_latent"),
io.Latent.Input("audio_latent"),
],
outputs=[
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, video_latent, audio_latent) -> io.NodeOutput:
output = {}
output.update(video_latent)
output.update(audio_latent)
video_noise_mask = video_latent.get("noise_mask", None)
audio_noise_mask = audio_latent.get("noise_mask", None)
if video_noise_mask is not None or audio_noise_mask is not None:
if video_noise_mask is None:
video_noise_mask = torch.ones_like(video_latent["samples"])
if audio_noise_mask is None:
audio_noise_mask = torch.ones_like(audio_latent["samples"])
output["noise_mask"] = comfy.nested_tensor.NestedTensor((video_noise_mask, audio_noise_mask))
output["samples"] = comfy.nested_tensor.NestedTensor((video_latent["samples"], audio_latent["samples"]))
return io.NodeOutput(output)
class LTXVSeparateAVLatent(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LTXVSeparateAVLatent",
category="latent/video/ltxv",
description="LTXV Separate AV Latent",
inputs=[
io.Latent.Input("av_latent"),
],
outputs=[
io.Latent.Output(display_name="video_latent"),
io.Latent.Output(display_name="audio_latent"),
],
)
@classmethod
def execute(cls, av_latent) -> io.NodeOutput:
latents = av_latent["samples"].unbind()
video_latent = av_latent.copy()
video_latent["samples"] = latents[0]
audio_latent = av_latent.copy()
audio_latent["samples"] = latents[1]
if "noise_mask" in av_latent:
masks = av_latent["noise_mask"]
if masks is not None:
masks = masks.unbind()
video_latent["noise_mask"] = masks[0]
audio_latent["noise_mask"] = masks[1]
return io.NodeOutput(video_latent, audio_latent)
class LtxvExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
EmptyLTXVLatentVideo,
LTXVImgToVideo,
LTXVImgToVideoInplace,
ModelSamplingLTXV,
LTXVConditioning,
LTXVScheduler,
LTXVAddGuide,
LTXVPreprocess,
LTXVCropGuides,
LTXVConcatAVLatent,
LTXVSeparateAVLatent,
]

View File

@ -0,0 +1,183 @@
import folder_paths
import comfy.utils
import comfy.model_management
import torch
from comfy.ldm.lightricks.vae.audio_vae import AudioVAE
from comfy_api.latest import ComfyExtension, io
class LTXVAudioVAELoader(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="LTXVAudioVAELoader",
display_name="LTXV Audio VAE Loader",
category="audio",
inputs=[
io.Combo.Input(
"ckpt_name",
options=folder_paths.get_filename_list("checkpoints"),
tooltip="Audio VAE checkpoint to load.",
)
],
outputs=[io.Vae.Output(display_name="Audio VAE")],
)
@classmethod
def execute(cls, ckpt_name: str) -> io.NodeOutput:
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
return io.NodeOutput(AudioVAE(sd, metadata))
class LTXVAudioVAEEncode(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="LTXVAudioVAEEncode",
display_name="LTXV Audio VAE Encode",
category="audio",
inputs=[
io.Audio.Input("audio", tooltip="The audio to be encoded."),
io.Vae.Input(
id="audio_vae",
display_name="Audio VAE",
tooltip="The Audio VAE model to use for encoding.",
),
],
outputs=[io.Latent.Output(display_name="Audio Latent")],
)
@classmethod
def execute(cls, audio, audio_vae: AudioVAE) -> io.NodeOutput:
audio_latents = audio_vae.encode(audio)
return io.NodeOutput(
{
"samples": audio_latents,
"sample_rate": int(audio_vae.sample_rate),
"type": "audio",
}
)
class LTXVAudioVAEDecode(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="LTXVAudioVAEDecode",
display_name="LTXV Audio VAE Decode",
category="audio",
inputs=[
io.Latent.Input("samples", tooltip="The latent to be decoded."),
io.Vae.Input(
id="audio_vae",
display_name="Audio VAE",
tooltip="The Audio VAE model used for decoding the latent.",
),
],
outputs=[io.Audio.Output(display_name="Audio")],
)
@classmethod
def execute(cls, samples, audio_vae: AudioVAE) -> io.NodeOutput:
audio_latent = samples["samples"]
if audio_latent.is_nested:
audio_latent = audio_latent.unbind()[-1]
audio = audio_vae.decode(audio_latent).to(audio_latent.device)
output_audio_sample_rate = audio_vae.output_sample_rate
return io.NodeOutput(
{
"waveform": audio,
"sample_rate": int(output_audio_sample_rate),
}
)
class LTXVEmptyLatentAudio(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="LTXVEmptyLatentAudio",
display_name="LTXV Empty Latent Audio",
category="latent/audio",
inputs=[
io.Int.Input(
"frames_number",
default=97,
min=1,
max=1000,
step=1,
display_mode=io.NumberDisplay.number,
tooltip="Number of frames.",
),
io.Int.Input(
"frame_rate",
default=25,
min=1,
max=1000,
step=1,
display_mode=io.NumberDisplay.number,
tooltip="Number of frames per second.",
),
io.Int.Input(
"batch_size",
default=1,
min=1,
max=4096,
display_mode=io.NumberDisplay.number,
tooltip="The number of latent audio samples in the batch.",
),
io.Vae.Input(
id="audio_vae",
display_name="Audio VAE",
tooltip="The Audio VAE model to get configuration from.",
),
],
outputs=[io.Latent.Output(display_name="Latent")],
)
@classmethod
def execute(
cls,
frames_number: int,
frame_rate: int,
batch_size: int,
audio_vae: AudioVAE,
) -> io.NodeOutput:
"""Generate empty audio latents matching the reference pipeline structure."""
assert audio_vae is not None, "Audio VAE model is required"
z_channels = audio_vae.latent_channels
audio_freq = audio_vae.latent_frequency_bins
sampling_rate = int(audio_vae.sample_rate)
num_audio_latents = audio_vae.num_of_latents_from_frames(frames_number, frame_rate)
audio_latents = torch.zeros(
(batch_size, z_channels, num_audio_latents, audio_freq),
device=comfy.model_management.intermediate_device(),
)
return io.NodeOutput(
{
"samples": audio_latents,
"sample_rate": sampling_rate,
"type": "audio",
}
)
class LTXVAudioExtension(ComfyExtension):
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
LTXVAudioVAELoader,
LTXVAudioVAEEncode,
LTXVAudioVAEDecode,
LTXVEmptyLatentAudio,
]
async def comfy_entrypoint() -> ComfyExtension:
return LTXVAudioExtension()

View File

@ -0,0 +1,75 @@
from comfy import model_management
import math
class LTXVLatentUpsampler:
"""
Upsamples a video latent by a factor of 2.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
"upscale_model": ("LATENT_UPSCALE_MODEL",),
"vae": ("VAE",),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "upsample_latent"
CATEGORY = "latent/video"
EXPERIMENTAL = True
def upsample_latent(
self,
samples: dict,
upscale_model,
vae,
) -> tuple:
"""
Upsample the input latent using the provided model.
Args:
samples (dict): Input latent samples
upscale_model (LatentUpsampler): Loaded upscale model
vae: VAE model for normalization
auto_tiling (bool): Whether to automatically tile the input for processing
Returns:
tuple: Tuple containing the upsampled latent
"""
device = model_management.get_torch_device()
memory_required = model_management.module_size(upscale_model)
model_dtype = next(upscale_model.parameters()).dtype
latents = samples["samples"]
input_dtype = latents.dtype
memory_required += math.prod(latents.shape) * 3000.0 # TODO: more accurate
model_management.free_memory(memory_required, device)
try:
upscale_model.to(device) # TODO: use the comfy model management system.
latents = latents.to(dtype=model_dtype, device=device)
"""Upsample latents without tiling."""
latents = vae.first_stage_model.per_channel_statistics.un_normalize(latents)
upsampled_latents = upscale_model(latents)
finally:
upscale_model.cpu()
upsampled_latents = vae.first_stage_model.per_channel_statistics.normalize(
upsampled_latents
)
upsampled_latents = upsampled_latents.to(dtype=input_dtype, device=model_management.intermediate_device())
return_dict = samples.copy()
return_dict["samples"] = upsampled_latents
return_dict.pop("noise_mask", None)
return (return_dict,)
NODE_CLASS_MAPPINGS = {
"LTXVLatentUpsampler": LTXVLatentUpsampler,
}

View File

@ -295,7 +295,11 @@ class VAEDecode:
DESCRIPTION = "Decodes latent images back into pixel space images."
def decode(self, vae, samples):
images = vae.decode(samples["samples"])
latent = samples["samples"]
if latent.is_nested:
latent = latent.unbind()[0]
images = vae.decode(latent)
if len(images.shape) == 5: #Combine batches
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
return (images, )
@ -970,7 +974,7 @@ class DualCLIPLoader:
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "newbie"], ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream", "hunyuan_image", "hunyuan_video_15", "kandinsky5", "kandinsky5_image", "ltxv", "newbie"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),
@ -2331,6 +2335,8 @@ async def init_builtin_extra_nodes():
"nodes_mochi.py",
"nodes_slg.py",
"nodes_mahiro.py",
"nodes_lt_upsampler.py",
"nodes_lt_audio.py",
"nodes_lt.py",
"nodes_hooks.py",
"nodes_load_3d.py",

View File

@ -3,7 +3,7 @@ name = "ComfyUI"
version = "0.7.0"
readme = "README.md"
license = { file = "LICENSE" }
requires-python = ">=3.9"
requires-python = ">=3.10"
[project.urls]
homepage = "https://www.comfy.org/"