ComfyUI/tests/inference/test_workflows.py
2025-12-09 13:29:41 -08:00

65 lines
2.8 KiB
Python

import importlib.resources
import json
import logging
from importlib.abc import Traversable
from typing import Any, AsyncGenerator
import pytest
from comfy.api.components.schema.prompt import Prompt
from comfy.client.embedded_comfy_client import Comfy
from comfy.model_downloader import add_known_models, KNOWN_LORAS
from comfy.model_downloader_types import CivitFile, HuggingFile
from comfy_extras.nodes.nodes_audio import TorchAudioNotFoundError
from . import workflows
logger = logging.getLogger(__name__)
@pytest.fixture(scope="function", autouse=False)
async def client(tmp_path_factory) -> AsyncGenerator[Any, Any]:
async with Comfy() as client:
yield client
def _prepare_for_workflows() -> dict[str, Traversable]:
add_known_models("loras", KNOWN_LORAS, CivitFile(13941, 16576, "epi_noiseoffset2.safetensors"))
add_known_models("checkpoints", HuggingFile("autismanon/modeldump", "cardosAnime_v20.safetensors"))
return {f.name: f for f in importlib.resources.files(workflows).iterdir() if f.is_file() and f.name.endswith(".json")}
@pytest.mark.asyncio
@pytest.mark.parametrize("workflow_name, workflow_file", _prepare_for_workflows().items())
async def test_workflow(workflow_name: str, workflow_file: Traversable, has_gpu: bool, client: Comfy):
if not has_gpu:
pytest.skip("requires gpu")
workflow = json.loads(workflow_file.read_text(encoding="utf8"))
prompt = Prompt.validate(workflow)
# todo: add all the models we want to test a bit m2ore elegantly
outputs = {}
try:
outputs = await client.queue_prompt(prompt)
except TorchAudioNotFoundError:
pytest.skip("requires torchaudio")
if any(v.class_type == "SaveImage" for v in prompt.values()):
save_image_node_id = next(key for key in prompt if prompt[key].class_type == "SaveImage")
assert outputs[save_image_node_id]["images"][0]["abs_path"] is not None
elif any(v.class_type == "SaveAudio" for v in prompt.values()):
save_audio_node_id = next(key for key in prompt if prompt[key].class_type == "SaveAudio")
assert outputs[save_audio_node_id]["audio"][0]["filename"] is not None
elif any(v.class_type == "SaveAnimatedWEBP" for v in prompt.values()):
save_video_node_id = next(key for key in prompt if prompt[key].class_type == "SaveAnimatedWEBP")
assert outputs[save_video_node_id]["images"][0]["filename"] is not None
elif any(v.class_type == "PreviewString" for v in prompt.values()):
save_image_node_id = next(key for key in prompt if prompt[key].class_type == "PreviewString")
output_str = outputs[save_image_node_id]["string"][0]
assert output_str is not None
assert len(output_str) > 0
else:
assert len(outputs) > 0
logger.warning(f"test {workflow_name} did not have a node that could be checked for output")