ComfyUI/comfy/cmd/main.py
2024-03-12 09:49:47 -07:00

311 lines
11 KiB
Python

from .. import options
# Suppress warnings during import
import warnings
warnings.filterwarnings("ignore", message="torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.")
options.enable_args_parsing()
import logging
import os
import importlib.util
from ..cmd import cuda_malloc
from ..cmd import folder_paths
from .extra_model_paths import load_extra_path_config
from ..analytics.analytics import initialize_event_tracking
from ..nodes.package import import_all_nodes_in_workspace
import time
def execute_prestartup_script():
def execute_script(script_path):
module_name = os.path.splitext(script_path)[0]
try:
spec = importlib.util.spec_from_file_location(module_name, script_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return True
except Exception as e:
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
return False
node_paths = folder_paths.get_folder_paths("custom_nodes")
node_prestartup_times = []
for custom_node_path in node_paths:
possible_modules = os.listdir(custom_node_path) if os.path.exists(custom_node_path) else []
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__":
continue
script_path = os.path.join(module_path, "prestartup_script.py")
if os.path.exists(script_path):
time_before = time.perf_counter()
success = execute_script(script_path)
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_prestartup_times) > 0:
logging.info("\nPrestartup times for custom nodes:")
for n in sorted(node_prestartup_times):
if n[2]:
import_message = ""
else:
import_message = " (PRESTARTUP FAILED)"
logging.info("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
execute_prestartup_script()
# Main code
import asyncio
import itertools
import shutil
import threading
import gc
from ..cli_args import args
if os.name == "nt":
import logging
logging.getLogger("xformers").addFilter(
lambda record: 'A matching Triton is not available' not in record.getMessage())
if args.cuda_device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
logging.info("Set cuda device to:", args.cuda_device)
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
from .. import utils
from ..cmd import server as server_module
from ..component_model.abstract_prompt_queue import AbstractPromptQueue
from ..component_model.queue_types import BinaryEventTypes, ExecutionStatus
from .. import model_management
from ..distributed.distributed_prompt_queue import DistributedPromptQueue
from ..component_model.executor_types import ExecutorToClientProgress
from ..distributed.server_stub import ServerStub
def prompt_worker(q: AbstractPromptQueue, _server: server_module.PromptServer):
from ..cmd.execution import PromptExecutor
e = PromptExecutor(_server)
last_gc_collect = 0
need_gc = False
gc_collect_interval = 10.0
current_time = 0.0
while True:
timeout = 1000.0
if need_gc:
timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0)
queue_item = q.get(timeout=timeout)
if queue_item is not None:
item, item_id = queue_item
execution_start_time = time.perf_counter()
prompt_id = item[1]
_server.last_prompt_id = prompt_id
e.execute(item[2], prompt_id, item[3], item[4])
need_gc = True
q.task_done(item_id,
e.outputs_ui,
status=ExecutionStatus(
status_str='success' if e.success else 'error',
completed=e.success,
messages=e.status_messages))
if _server.client_id is not None:
_server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, _server.client_id)
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
flags = q.get_flags()
free_memory = flags.get("free_memory", False)
if flags.get("unload_models", free_memory):
model_management.unload_all_models()
need_gc = True
last_gc_collect = 0
if free_memory:
e.reset()
need_gc = True
last_gc_collect = 0
if need_gc:
current_time = time.perf_counter()
if (current_time - last_gc_collect) > gc_collect_interval:
gc.collect()
model_management.soft_empty_cache()
last_gc_collect = current_time
need_gc = False
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
def hijack_progress(server: ExecutorToClientProgress):
def hook(value: float, total: float, preview_image):
model_management.throw_exception_if_processing_interrupted()
progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id}
server.send_sync("progress", progress, server.client_id)
if preview_image is not None:
server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
utils.set_progress_bar_global_hook(hook)
def cleanup_temp():
try:
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True)
except NameError:
# __file__ was not defined
pass
def cuda_malloc_warning():
device = model_management.get_torch_device()
device_name = model_management.get_torch_device_name(device)
cuda_malloc_warning = False
if "cudaMallocAsync" in device_name:
for b in cuda_malloc.blacklist:
if b in device_name:
cuda_malloc_warning = True
if cuda_malloc_warning:
logging.warning(
"\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
async def main():
if args.temp_directory:
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
logging.debug(f"Setting temp directory to: {temp_dir}")
folder_paths.set_temp_directory(temp_dir)
cleanup_temp()
# create the default directories if we're instructed to, then exit
# or, if it's a windows standalone build, the single .exe file should have its side-by-side directories always created
if args.create_directories:
folder_paths.create_directories()
return
if args.windows_standalone_build:
folder_paths.create_directories()
try:
import new_updater
new_updater.update_windows_updater()
except:
pass
# configure extra model paths earlier
try:
extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml")
if os.path.isfile(extra_model_paths_config_path):
load_extra_path_config(extra_model_paths_config_path)
except NameError:
pass
if args.extra_model_paths_config:
for config_path in itertools.chain(*args.extra_model_paths_config):
load_extra_path_config(config_path)
loop = asyncio.get_event_loop()
server = server_module.PromptServer(loop)
if args.external_address is not None:
server.external_address = args.external_address
# at this stage, it's safe to import nodes
server.nodes = import_all_nodes_in_workspace()
# as a side effect, this also populates the nodes for execution
if args.distributed_queue_connection_uri is not None:
distributed = True
q = DistributedPromptQueue(
caller_server=server if args.distributed_queue_frontend else None,
connection_uri=args.distributed_queue_connection_uri,
is_caller=args.distributed_queue_frontend,
is_callee=args.distributed_queue_worker,
loop=loop,
queue_name=args.distributed_queue_name
)
await q.init()
else:
distributed = False
from execution import PromptQueue
q = PromptQueue(server)
server.prompt_queue = q
server.add_routes()
hijack_progress(server)
cuda_malloc_warning()
# in a distributed setting, the default prompt worker will not be able to send execution events via the websocket
worker_thread_server = server if not distributed else ServerStub()
if not distributed or args.distributed_queue_worker:
if distributed:
logging.warning(f"Distributed workers started in the default thread loop cannot notify clients of progress updates. Instead of comfyui or main.py, use comfyui-worker.")
threading.Thread(target=prompt_worker, daemon=True, args=(q, worker_thread_server,)).start()
# server has been imported and things should be looking good
initialize_event_tracking(loop)
if args.output_directory:
output_dir = os.path.abspath(args.output_directory)
logging.debug(f"Setting output directory to: {output_dir}")
folder_paths.set_output_directory(output_dir)
# These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes
folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints"))
folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip"))
folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae"))
if args.input_directory:
input_dir = os.path.abspath(args.input_directory)
logging.debug(f"Setting input directory to: {input_dir}")
folder_paths.set_input_directory(input_dir)
if args.quick_test_for_ci:
exit(0)
call_on_start = None
if args.auto_launch:
def startup_server(address, port):
import webbrowser
if os.name == 'nt' and address == '0.0.0.0' or address == '':
address = '127.0.0.1'
webbrowser.open(f"http://{address}:{port}")
call_on_start = startup_server
server.address = args.listen
server.port = args.port
try:
await run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server,
call_on_start=call_on_start)
except asyncio.CancelledError:
if distributed:
await q.close()
logging.debug("\nStopped server")
cleanup_temp()
def entrypoint():
asyncio.run(main())
if __name__ == "__main__":
entrypoint()