mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-10 14:20:49 +08:00
311 lines
11 KiB
Python
311 lines
11 KiB
Python
from .. import options
|
|
# Suppress warnings during import
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore", message="torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.")
|
|
options.enable_args_parsing()
|
|
|
|
import logging
|
|
import os
|
|
import importlib.util
|
|
|
|
from ..cmd import cuda_malloc
|
|
from ..cmd import folder_paths
|
|
from .extra_model_paths import load_extra_path_config
|
|
from ..analytics.analytics import initialize_event_tracking
|
|
from ..nodes.package import import_all_nodes_in_workspace
|
|
|
|
import time
|
|
|
|
|
|
def execute_prestartup_script():
|
|
def execute_script(script_path):
|
|
module_name = os.path.splitext(script_path)[0]
|
|
try:
|
|
spec = importlib.util.spec_from_file_location(module_name, script_path)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
return True
|
|
except Exception as e:
|
|
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
|
|
return False
|
|
|
|
node_paths = folder_paths.get_folder_paths("custom_nodes")
|
|
node_prestartup_times = []
|
|
for custom_node_path in node_paths:
|
|
possible_modules = os.listdir(custom_node_path) if os.path.exists(custom_node_path) else []
|
|
|
|
for possible_module in possible_modules:
|
|
module_path = os.path.join(custom_node_path, possible_module)
|
|
if os.path.isfile(module_path) or module_path.endswith(".disabled") or module_path == "__pycache__":
|
|
continue
|
|
|
|
script_path = os.path.join(module_path, "prestartup_script.py")
|
|
if os.path.exists(script_path):
|
|
time_before = time.perf_counter()
|
|
success = execute_script(script_path)
|
|
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
|
|
if len(node_prestartup_times) > 0:
|
|
logging.info("\nPrestartup times for custom nodes:")
|
|
for n in sorted(node_prestartup_times):
|
|
if n[2]:
|
|
import_message = ""
|
|
else:
|
|
import_message = " (PRESTARTUP FAILED)"
|
|
logging.info("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
|
|
|
|
|
|
execute_prestartup_script()
|
|
|
|
# Main code
|
|
import asyncio
|
|
import itertools
|
|
import shutil
|
|
import threading
|
|
import gc
|
|
|
|
from ..cli_args import args
|
|
|
|
if os.name == "nt":
|
|
import logging
|
|
|
|
logging.getLogger("xformers").addFilter(
|
|
lambda record: 'A matching Triton is not available' not in record.getMessage())
|
|
|
|
if args.cuda_device is not None:
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
|
|
logging.info("Set cuda device to:", args.cuda_device)
|
|
|
|
if args.deterministic:
|
|
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
|
|
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
|
|
|
|
from .. import utils
|
|
|
|
from ..cmd import server as server_module
|
|
from ..component_model.abstract_prompt_queue import AbstractPromptQueue
|
|
from ..component_model.queue_types import BinaryEventTypes, ExecutionStatus
|
|
from .. import model_management
|
|
from ..distributed.distributed_prompt_queue import DistributedPromptQueue
|
|
from ..component_model.executor_types import ExecutorToClientProgress
|
|
from ..distributed.server_stub import ServerStub
|
|
|
|
|
|
def prompt_worker(q: AbstractPromptQueue, _server: server_module.PromptServer):
|
|
from ..cmd.execution import PromptExecutor
|
|
|
|
e = PromptExecutor(_server)
|
|
last_gc_collect = 0
|
|
need_gc = False
|
|
gc_collect_interval = 10.0
|
|
current_time = 0.0
|
|
while True:
|
|
timeout = 1000.0
|
|
if need_gc:
|
|
timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0)
|
|
|
|
queue_item = q.get(timeout=timeout)
|
|
if queue_item is not None:
|
|
item, item_id = queue_item
|
|
execution_start_time = time.perf_counter()
|
|
prompt_id = item[1]
|
|
_server.last_prompt_id = prompt_id
|
|
|
|
e.execute(item[2], prompt_id, item[3], item[4])
|
|
need_gc = True
|
|
q.task_done(item_id,
|
|
e.outputs_ui,
|
|
status=ExecutionStatus(
|
|
status_str='success' if e.success else 'error',
|
|
completed=e.success,
|
|
messages=e.status_messages))
|
|
if _server.client_id is not None:
|
|
_server.send_sync("executing", { "node": None, "prompt_id": prompt_id }, _server.client_id)
|
|
|
|
current_time = time.perf_counter()
|
|
execution_time = current_time - execution_start_time
|
|
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
|
|
|
|
flags = q.get_flags()
|
|
free_memory = flags.get("free_memory", False)
|
|
|
|
if flags.get("unload_models", free_memory):
|
|
model_management.unload_all_models()
|
|
need_gc = True
|
|
last_gc_collect = 0
|
|
|
|
if free_memory:
|
|
e.reset()
|
|
need_gc = True
|
|
last_gc_collect = 0
|
|
|
|
if need_gc:
|
|
current_time = time.perf_counter()
|
|
if (current_time - last_gc_collect) > gc_collect_interval:
|
|
gc.collect()
|
|
model_management.soft_empty_cache()
|
|
last_gc_collect = current_time
|
|
need_gc = False
|
|
|
|
|
|
async def run(server, address='', port=8188, verbose=True, call_on_start=None):
|
|
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
|
|
|
|
|
|
def hijack_progress(server: ExecutorToClientProgress):
|
|
def hook(value: float, total: float, preview_image):
|
|
model_management.throw_exception_if_processing_interrupted()
|
|
progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id}
|
|
|
|
server.send_sync("progress", progress, server.client_id)
|
|
if preview_image is not None:
|
|
server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
|
|
|
|
utils.set_progress_bar_global_hook(hook)
|
|
|
|
|
|
def cleanup_temp():
|
|
try:
|
|
temp_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
|
|
if os.path.exists(temp_dir):
|
|
shutil.rmtree(temp_dir, ignore_errors=True)
|
|
except NameError:
|
|
# __file__ was not defined
|
|
pass
|
|
|
|
|
|
def cuda_malloc_warning():
|
|
device = model_management.get_torch_device()
|
|
device_name = model_management.get_torch_device_name(device)
|
|
cuda_malloc_warning = False
|
|
if "cudaMallocAsync" in device_name:
|
|
for b in cuda_malloc.blacklist:
|
|
if b in device_name:
|
|
cuda_malloc_warning = True
|
|
if cuda_malloc_warning:
|
|
logging.warning(
|
|
"\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
|
|
|
|
|
|
async def main():
|
|
if args.temp_directory:
|
|
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
|
|
logging.debug(f"Setting temp directory to: {temp_dir}")
|
|
folder_paths.set_temp_directory(temp_dir)
|
|
cleanup_temp()
|
|
|
|
# create the default directories if we're instructed to, then exit
|
|
# or, if it's a windows standalone build, the single .exe file should have its side-by-side directories always created
|
|
if args.create_directories:
|
|
folder_paths.create_directories()
|
|
return
|
|
|
|
if args.windows_standalone_build:
|
|
folder_paths.create_directories()
|
|
try:
|
|
import new_updater
|
|
new_updater.update_windows_updater()
|
|
except:
|
|
pass
|
|
|
|
# configure extra model paths earlier
|
|
try:
|
|
extra_model_paths_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "extra_model_paths.yaml")
|
|
if os.path.isfile(extra_model_paths_config_path):
|
|
load_extra_path_config(extra_model_paths_config_path)
|
|
except NameError:
|
|
pass
|
|
|
|
if args.extra_model_paths_config:
|
|
for config_path in itertools.chain(*args.extra_model_paths_config):
|
|
load_extra_path_config(config_path)
|
|
|
|
loop = asyncio.get_event_loop()
|
|
server = server_module.PromptServer(loop)
|
|
if args.external_address is not None:
|
|
server.external_address = args.external_address
|
|
|
|
# at this stage, it's safe to import nodes
|
|
server.nodes = import_all_nodes_in_workspace()
|
|
# as a side effect, this also populates the nodes for execution
|
|
|
|
if args.distributed_queue_connection_uri is not None:
|
|
distributed = True
|
|
q = DistributedPromptQueue(
|
|
caller_server=server if args.distributed_queue_frontend else None,
|
|
connection_uri=args.distributed_queue_connection_uri,
|
|
is_caller=args.distributed_queue_frontend,
|
|
is_callee=args.distributed_queue_worker,
|
|
loop=loop,
|
|
queue_name=args.distributed_queue_name
|
|
)
|
|
await q.init()
|
|
else:
|
|
distributed = False
|
|
from execution import PromptQueue
|
|
q = PromptQueue(server)
|
|
server.prompt_queue = q
|
|
|
|
|
|
server.add_routes()
|
|
hijack_progress(server)
|
|
cuda_malloc_warning()
|
|
|
|
# in a distributed setting, the default prompt worker will not be able to send execution events via the websocket
|
|
worker_thread_server = server if not distributed else ServerStub()
|
|
if not distributed or args.distributed_queue_worker:
|
|
if distributed:
|
|
logging.warning(f"Distributed workers started in the default thread loop cannot notify clients of progress updates. Instead of comfyui or main.py, use comfyui-worker.")
|
|
threading.Thread(target=prompt_worker, daemon=True, args=(q, worker_thread_server,)).start()
|
|
|
|
# server has been imported and things should be looking good
|
|
initialize_event_tracking(loop)
|
|
|
|
if args.output_directory:
|
|
output_dir = os.path.abspath(args.output_directory)
|
|
logging.debug(f"Setting output directory to: {output_dir}")
|
|
folder_paths.set_output_directory(output_dir)
|
|
|
|
# These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes
|
|
folder_paths.add_model_folder_path("checkpoints", os.path.join(folder_paths.get_output_directory(), "checkpoints"))
|
|
folder_paths.add_model_folder_path("clip", os.path.join(folder_paths.get_output_directory(), "clip"))
|
|
folder_paths.add_model_folder_path("vae", os.path.join(folder_paths.get_output_directory(), "vae"))
|
|
|
|
if args.input_directory:
|
|
input_dir = os.path.abspath(args.input_directory)
|
|
logging.debug(f"Setting input directory to: {input_dir}")
|
|
folder_paths.set_input_directory(input_dir)
|
|
|
|
if args.quick_test_for_ci:
|
|
exit(0)
|
|
|
|
call_on_start = None
|
|
if args.auto_launch:
|
|
def startup_server(address, port):
|
|
import webbrowser
|
|
if os.name == 'nt' and address == '0.0.0.0' or address == '':
|
|
address = '127.0.0.1'
|
|
webbrowser.open(f"http://{address}:{port}")
|
|
|
|
call_on_start = startup_server
|
|
|
|
server.address = args.listen
|
|
server.port = args.port
|
|
try:
|
|
await run(server, address=args.listen, port=args.port, verbose=not args.dont_print_server,
|
|
call_on_start=call_on_start)
|
|
except asyncio.CancelledError:
|
|
if distributed:
|
|
await q.close()
|
|
logging.debug("\nStopped server")
|
|
|
|
cleanup_temp()
|
|
|
|
|
|
def entrypoint():
|
|
asyncio.run(main())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
entrypoint()
|