Merge upstream

This commit is contained in:
doctorpangloss 2024-03-12 09:49:47 -07:00
commit 93cdef65a4
21 changed files with 94 additions and 85 deletions

View File

@ -209,7 +209,7 @@ def parse_args(parser: Optional[argparse.ArgumentParser] = None) -> Configuratio
if args.disable_auto_launch:
args.auto_launch = False
logging_level = logging.WARNING
logging_level = logging.INFO
if args.verbose:
logging_level = logging.DEBUG

View File

@ -1,6 +1,6 @@
import os
import yaml
import logging
def load_extra_path_config(yaml_path):
from . import folder_paths
@ -21,5 +21,5 @@ def load_extra_path_config(yaml_path):
full_path = y
if base_path is not None:
full_path = os.path.join(base_path, full_path)
print("Adding extra search path", x, full_path)
logging.info(f"Adding extra search path {x} ({full_path})")
folder_paths.add_model_folder_path(x, full_path)

View File

@ -1,6 +1,7 @@
import os
import sys
import time
import logging
from pkg_resources import resource_filename
from ..cli_args import args
@ -16,7 +17,7 @@ elif args.cwd is not None:
try:
os.makedirs(args.cwd, exist_ok=True)
except:
print("Failed to create custom working directory")
logging.error("Failed to create custom working directory")
# wrap the path to prevent slashedness from glitching out common path checks
base_path = os.path.realpath(args.cwd)
else:
@ -52,7 +53,7 @@ if not os.path.exists(input_directory):
try:
os.makedirs(input_directory)
except:
print("Failed to create input directory")
logging.error("Failed to create input directory")
def set_output_directory(output_dir):
global output_directory
@ -154,7 +155,7 @@ def recursive_search(directory, excluded_dir_names=None):
try:
dirs[directory] = os.path.getmtime(directory)
except FileNotFoundError:
print(f"Warning: Unable to access {directory}. Skipping this path.")
logging.warning(f"Warning: Unable to access {directory}. Skipping this path.")
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
@ -167,7 +168,7 @@ def recursive_search(directory, excluded_dir_names=None):
try:
dirs[path] = os.path.getmtime(path)
except FileNotFoundError:
print(f"Warning: Unable to access {path}. Skipping this path.")
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
continue
return result, dirs
@ -257,7 +258,7 @@ def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height
"\n full_output_folder: " + os.path.abspath(full_output_folder) + \
"\n output_dir: " + output_dir + \
"\n commonpath: " + os.path.commonpath((output_dir, os.path.abspath(full_output_folder)))
print(err)
logging.error(err)
raise Exception(err)
try:

View File

@ -6,6 +6,7 @@ from ..cli_args_types import LatentPreviewMethod
from ..taesd.taesd import TAESD
from ..cmd import folder_paths
from .. import utils
import logging
MAX_PREVIEW_RESOLUTION = 512
@ -70,7 +71,7 @@ def get_previewer(device, latent_format):
taesd = TAESD(None, taesd_decoder_path).to(device)
previewer = TAESDPreviewerImpl(taesd)
else:
print("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name))
logging.warning("Warning: TAESD previews enabled, but could not find models/vae_approx/{}".format(latent_format.taesd_decoder_name))
if previewer is None:
if latent_format.latent_rgb_factors is not None:

View File

@ -5,6 +5,7 @@ import warnings
warnings.filterwarnings("ignore", message="torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.")
options.enable_args_parsing()
import logging
import os
import importlib.util
@ -26,7 +27,7 @@ def execute_prestartup_script():
spec.loader.exec_module(module)
return True
except Exception as e:
print(f"Failed to execute startup-script: {script_path} / {e}")
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
return False
node_paths = folder_paths.get_folder_paths("custom_nodes")
@ -45,14 +46,13 @@ def execute_prestartup_script():
success = execute_script(script_path)
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
if len(node_prestartup_times) > 0:
print("\nPrestartup times for custom nodes:")
logging.info("\nPrestartup times for custom nodes:")
for n in sorted(node_prestartup_times):
if n[2]:
import_message = ""
else:
import_message = " (PRESTARTUP FAILED)"
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
print()
logging.info("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
execute_prestartup_script()
@ -74,7 +74,7 @@ if os.name == "nt":
if args.cuda_device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
print("Set cuda device to:", args.cuda_device)
logging.info("Set cuda device to:", args.cuda_device)
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
@ -124,7 +124,7 @@ def prompt_worker(q: AbstractPromptQueue, _server: server_module.PromptServer):
current_time = time.perf_counter()
execution_time = current_time - execution_start_time
print("Prompt executed in {:.2f} seconds".format(execution_time))
logging.info("Prompt executed in {:.2f} seconds".format(execution_time))
flags = q.get_flags()
free_memory = flags.get("free_memory", False)
@ -183,14 +183,14 @@ def cuda_malloc_warning():
if b in device_name:
cuda_malloc_warning = True
if cuda_malloc_warning:
print(
logging.warning(
"\nWARNING: this card most likely does not support cuda-malloc, if you get \"CUDA error\" please run ComfyUI with: --disable-cuda-malloc\n")
async def main():
if args.temp_directory:
temp_dir = os.path.join(os.path.abspath(args.temp_directory), "temp")
print(f"Setting temp directory to: {temp_dir}")
logging.debug(f"Setting temp directory to: {temp_dir}")
folder_paths.set_temp_directory(temp_dir)
cleanup_temp()
@ -263,7 +263,7 @@ async def main():
if args.output_directory:
output_dir = os.path.abspath(args.output_directory)
print(f"Setting output directory to: {output_dir}")
logging.debug(f"Setting output directory to: {output_dir}")
folder_paths.set_output_directory(output_dir)
# These are the default folders that checkpoints, clip and vae models will be saved to when using CheckpointSave, etc.. nodes
@ -273,7 +273,7 @@ async def main():
if args.input_directory:
input_dir = os.path.abspath(args.input_directory)
print(f"Setting input directory to: {input_dir}")
logging.debug(f"Setting input directory to: {input_dir}")
folder_paths.set_input_directory(input_dir)
if args.quick_test_for_ci:
@ -297,7 +297,7 @@ async def main():
except asyncio.CancelledError:
if distributed:
await q.close()
print("\nStopped server")
logging.debug("\nStopped server")
cleanup_temp()

View File

@ -12,6 +12,7 @@ from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
from io import BytesIO
import logging
import json
import os
import uuid
@ -33,7 +34,6 @@ from .. import utils
from .. import model_management
from ..component_model.executor_types import ExecutorToClientProgress
from ..component_model.file_output_path import file_output_path
from ..nodes.package import import_all_nodes_in_workspace
from ..nodes.package_typing import ExportedNodes
from ..vendor.appdirs import user_data_dir
from ..app.user_manager import UserManager
@ -43,7 +43,7 @@ async def send_socket_catch_exception(function, message):
try:
await function(message)
except (aiohttp.ClientError, aiohttp.ClientPayloadError, ConnectionResetError) as err:
print("send error:", err)
logging.warning("send error: {}".format(err))
@web.middleware
@ -136,7 +136,7 @@ class PromptServer(ExecutorToClientProgress):
async for msg in ws:
if msg.type == aiohttp.WSMsgType.ERROR:
print('ws connection closed with exception %s' % ws.exception())
logging.warning('ws connection closed with exception %s' % ws.exception())
finally:
self.sockets.pop(sid, None)
return ws
@ -426,9 +426,8 @@ class PromptServer(ExecutorToClientProgress):
try:
out[x] = node_info(x)
except Exception as e:
print(f"[ERROR] An error occurred while retrieving information for the '{x}' node.",
file=sys.stderr)
traceback.print_exc()
logging.error(f"[ERROR] An error occurred while retrieving information for the '{x}' node.")
logging.error(traceback.format_exc())
return web.json_response(out)
@routes.get("/object_info/{node_class}")
@ -461,7 +460,7 @@ class PromptServer(ExecutorToClientProgress):
@routes.post("/prompt")
async def post_prompt(request):
print("got prompt")
logging.info("got prompt")
resp_code = 200
out_string = ""
json_data = await request.json()
@ -495,7 +494,7 @@ class PromptServer(ExecutorToClientProgress):
response = {"prompt_id": prompt_id, "number": number, "node_errors": valid[3]}
return web.json_response(response)
else:
print("invalid prompt:", valid[1])
logging.warning("invalid prompt: {}".format(valid[1]))
return web.json_response({"error": valid[1], "node_errors": valid[3]}, status=400)
else:
return web.json_response({"error": "no prompt", "node_errors": []}, status=400)
@ -805,8 +804,8 @@ class PromptServer(ExecutorToClientProgress):
await site.start()
if verbose:
print("Starting server\n")
print("To see the GUI go to: http://{}:{}".format("localhost" if address == "0.0.0.0" else address, port))
logging.info("Starting server\n")
logging.info("To see the GUI go to: http://{}:{}".format("localhost" if address == "0.0.0.0" else address, port))
if call_on_start is not None:
call_on_start(address, port)
@ -818,8 +817,8 @@ class PromptServer(ExecutorToClientProgress):
try:
json_data = handler(json_data)
except Exception as e:
print(f"[ERROR] An error occurred during the on_prompt_handler processing")
traceback.print_exc()
logging.warning(f"[ERROR] An error occurred during the on_prompt_handler processing")
logging.warning(traceback.format_exc())
return json_data

View File

@ -1,6 +1,7 @@
import asyncio
import itertools
import os
import logging
from .extra_model_paths import load_extra_path_config
from .. import options
@ -19,7 +20,7 @@ async def main():
if args.cuda_device is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
print("Set cuda device to:", args.cuda_device)
logging.info(f"Set cuda device to: {args.cuda_device}")
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
@ -28,21 +29,21 @@ async def main():
# configure paths
if args.output_directory:
output_dir = os.path.abspath(args.output_directory)
print(f"Setting output directory to: {output_dir}")
logging.info(f"Setting output directory to: {output_dir}")
from ..cmd import folder_paths
folder_paths.set_output_directory(output_dir)
if args.input_directory:
input_dir = os.path.abspath(args.input_directory)
print(f"Setting input directory to: {input_dir}")
logging.info(f"Setting input directory to: {input_dir}")
from ..cmd import folder_paths
folder_paths.set_input_directory(input_dir)
if args.temp_directory:
temp_dir = os.path.abspath(args.temp_directory)
print(f"Setting temp directory to: {temp_dir}")
logging.info(f"Setting temp directory to: {temp_dir}")
from ..cmd import folder_paths
folder_paths.set_temp_directory(temp_dir)

View File

@ -433,7 +433,7 @@ def load_controlnet(ckpt_path, model=None):
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.info("unexpected controlnet keys: {}".format(unexpected))
logging.debug("unexpected controlnet keys: {}".format(unexpected))
global_average_pooling = False
filename = os.path.splitext(ckpt_path)[0]
@ -546,6 +546,6 @@ def load_t2i_adapter(t2i_data):
logging.warning("t2i missing {}".format(missing))
if len(unexpected) > 0:
logging.info("t2i unexpected {}".format(unexpected))
logging.debug("t2i unexpected {}".format(unexpected))
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)

View File

@ -178,7 +178,7 @@ def convert_vae_state_dict(vae_state_dict):
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
logging.info(f"Reshaping {k} for SD format")
logging.debug(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v)
return new_state_dict

View File

@ -4,6 +4,7 @@ import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
import logging
from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
from .sub_quadratic_attention import efficient_dot_product_attention
@ -19,7 +20,7 @@ ops = ops.disable_weight_init
# CrossAttn precision handling
if args.dont_upcast_attention:
print("disabling upcasting of attention")
logging.info("disabling upcasting of attention")
_ATTN_PRECISION = "fp16"
else:
_ATTN_PRECISION = "fp32"
@ -273,12 +274,12 @@ def attention_split(q, k, v, heads, mask=None):
model_management.soft_empty_cache(True)
if cleared_cache == False:
cleared_cache = True
print("out of memory error, emptying cache and trying again")
logging.warning("out of memory error, emptying cache and trying again")
continue
steps *= 2
if steps > 64:
raise e
print("out of memory error, increasing steps and trying again", steps)
logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
else:
raise e
@ -350,17 +351,17 @@ def attention_pytorch(q, k, v, heads, mask=None):
optimized_attention = attention_basic
if model_management.xformers_enabled():
print("Using xformers cross attention")
logging.info("Using xformers cross attention")
optimized_attention = attention_xformers
elif model_management.pytorch_attention_enabled():
print("Using pytorch cross attention")
logging.info("Using pytorch cross attention")
optimized_attention = attention_pytorch
else:
if args.use_split_cross_attention:
print("Using split optimization for cross attention")
logging.info("Using split optimization for cross attention")
optimized_attention = attention_split
else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
optimized_attention = attention_sub_quad
optimized_attention_masked = optimized_attention

View File

@ -5,6 +5,7 @@ import torch.nn as nn
import numpy as np
from einops import rearrange
from typing import Optional, Any
import logging
from .... import model_management
from .... import ops
@ -190,7 +191,7 @@ def slice_attention(q, k, v):
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again", steps)
logging.warning("out of memory error, increasing steps and trying again {}".format(steps))
return r1
@ -235,7 +236,7 @@ def pytorch_attention(q, k, v):
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(B, C, H, W)
except model_management.OOM_EXCEPTION as e:
print("scaled_dot_product_attention OOMed: switched to slice attention")
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
return out
@ -268,13 +269,13 @@ class AttnBlock(nn.Module):
padding=0)
if model_management.xformers_enabled_vae():
print("Using xformers attention in VAE")
logging.info("Using xformers attention in VAE")
self.optimized_attention = xformers_attention
elif model_management.pytorch_attention_enabled():
print("Using pytorch attention in VAE")
logging.info("Using pytorch attention in VAE")
self.optimized_attention = pytorch_attention
else:
print("Using split attention in VAE")
logging.info("Using split attention in VAE")
self.optimized_attention = normal_attention
def forward(self, x):
@ -562,7 +563,7 @@ class Decoder(nn.Module):
block_in = ch*ch_mult[self.num_resolutions-1]
curr_res = resolution // 2**(self.num_resolutions-1)
self.z_shape = (1,z_channels,curr_res,curr_res)
print("Working with z of shape {} = {} dimensions.".format(
logging.debug("Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)))
# z to block_in

View File

@ -4,6 +4,7 @@ import torch as th
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import logging
from .util import (
checkpoint,
@ -359,7 +360,7 @@ def apply_control(h, control, name):
try:
h += ctrl
except:
print("warning control could not be applied", h.shape, ctrl.shape)
logging.warning("warning control could not be applied {} {}".format(h.shape, ctrl.shape))
return h
class UNetModel(nn.Module):
@ -496,7 +497,7 @@ class UNetModel(nn.Module):
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
logging.debug("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None

View File

@ -14,6 +14,7 @@ import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math
import logging
try:
from typing import Optional, NamedTuple, List, Protocol
@ -170,7 +171,7 @@ def _get_attention_scores_no_kv_chunking(
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
except model_management.OOM_EXCEPTION:
print("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
logging.warning("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
torch.exp(attn_scores, out=attn_scores)
summed = torch.sum(attn_scores, dim=-1, keepdim=True)

View File

@ -67,8 +67,8 @@ class BaseModel(torch.nn.Module):
if self.adm_channels is None:
self.adm_channels = 0
self.inpaint_model = False
logging.warning("model_type {}".format(model_type.name))
logging.info("adm {}".format(self.adm_channels))
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t

View File

@ -34,7 +34,7 @@ lowvram_available = True
xpu_available = False
if args.deterministic:
logging.warning("Using deterministic algorithms for pytorch")
logging.info("Using deterministic algorithms for pytorch")
torch.use_deterministic_algorithms(True, warn_only=True)
directml_enabled = False
@ -46,7 +46,7 @@ if args.directml is not None:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
logging.warning("Using directml with device: {}".format(torch_directml.device_name(device_index)))
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
@ -122,7 +122,7 @@ def get_total_memory(dev=None, torch_total_too=False):
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
logging.warning("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
@ -148,7 +148,7 @@ else:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
logging.warning("xformers version: {}".format(XFORMERS_VERSION))
logging.info("xformers version: {}".format(XFORMERS_VERSION))
if XFORMERS_VERSION.startswith("0.0.18"):
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
logging.warning("Please downgrade or upgrade xformers to a different version.\n")
@ -216,11 +216,11 @@ elif args.highvram or args.gpu_only:
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
logging.warning("Forcing FP32, if this improves things please report it.")
logging.info("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16 or cpu_state == CPUState.MPS:
logging.warning("Forcing FP16.")
logging.info("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
@ -234,12 +234,12 @@ if cpu_state != CPUState.GPU:
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
logging.warning(f"Set vram state to: {vram_state.name}")
logging.info(f"Set vram state to: {vram_state.name}")
DISABLE_SMART_MEMORY = args.disable_smart_memory
if DISABLE_SMART_MEMORY:
logging.warning("Disabling smart memory management")
logging.info("Disabling smart memory management")
def get_torch_device_name(device):
if hasattr(device, 'type'):
@ -257,11 +257,11 @@ def get_torch_device_name(device):
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
logging.warning("Device: {}".format(get_torch_device_name(get_torch_device())))
logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
except:
logging.warning("Could not pick default device.")
logging.warning("VAE dtype: {}".format(VAE_DTYPE))
logging.info("VAE dtype: {}".format(VAE_DTYPE))
current_loaded_models = []
@ -304,7 +304,7 @@ class LoadedModel:
raise e
if lowvram_model_memory > 0:
logging.warning("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
mem_counter = 0
for m in self.real_model.modules():
if hasattr(m, "comfy_cast_weights"):
@ -352,7 +352,7 @@ def unload_model_clones(model):
to_unload = [i] + to_unload
for i in to_unload:
logging.warning("unload clone {}".format(i))
logging.debug("unload clone {}".format(i))
current_loaded_models.pop(i).model_unload()
def free_memory(memory_required, device, keep_loaded=[]):
@ -396,7 +396,7 @@ def load_models_gpu(models, memory_required=0):
models_already_loaded.append(loaded_model)
else:
if hasattr(x, "model"):
logging.warning(f"Requested to load {x.model.__class__.__name__}")
logging.info(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
@ -406,7 +406,7 @@ def load_models_gpu(models, memory_required=0):
free_memory(extra_mem, d, models_already_loaded)
return
logging.warning(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
total_memory_required = {}
for loaded_model in models_to_load:

View File

@ -5,6 +5,7 @@ import json
import hashlib
import math
import random
import logging
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
@ -68,7 +69,7 @@ class ConditioningAverage :
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
@ -107,7 +108,7 @@ class ConditioningConcat:
out = []
if len(conditioning_from) > 1:
print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]

View File

@ -4,6 +4,7 @@ import torch
import collections
from . import model_management
import math
import logging
from .sampler_names import SCHEDULER_NAMES, SAMPLER_NAMES
@ -626,7 +627,7 @@ def calculate_sigmas_scheduler(model, scheduler_name, steps):
elif scheduler_name == "sgm_uniform":
sigmas = normal_scheduler(model, steps, sgm=True)
else:
print("error invalid scheduler", scheduler_name)
logging.error("error invalid scheduler {}".format(scheduler_name))
return sigmas
def sampler_object(name):

View File

@ -229,7 +229,7 @@ class VAE:
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logging.info("Leftover VAE keys {}".format(u))
logging.debug("Leftover VAE keys {}".format(u))
if device is None:
device = model_management.vae_device()
@ -397,7 +397,7 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.info("clip unexpected: {}".format(u))
logging.debug("clip unexpected: {}".format(u))
return clip
def load_gligen(ckpt_path):
@ -538,18 +538,18 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.info("clip unexpected {}:".format(u))
logging.debug("clip unexpected {}:".format(u))
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys: {}".format(left_over))
logging.debug("left over keys: {}".format(left_over))
if output_model:
_model_patcher = model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
if inital_load_device != torch.device("cpu"):
logging.warning("loaded straight to GPU")
logging.info("loaded straight to GPU")
model_management.load_model_gpu(_model_patcher)
return (_model_patcher, clip, vae, clipvision)
@ -589,7 +589,7 @@ def load_unet_state_dict(sd): #load unet in diffusers format
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.warning("left over keys in unet: {}".format(left_over))
logging.info("left over keys in unet: {}".format(left_over))
return model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
def load_unet(unet_path):

View File

@ -26,7 +26,7 @@ def load_torch_file(ckpt, safe_load=False, device=None):
else:
pl_sd = torch.load(ckpt, map_location=device, pickle_module=checkpoint_pickle)
if "global_step" in pl_sd:
logging.info(f"Global Step: {pl_sd['global_step']}")
logging.debug(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:

View File

@ -1,7 +1,7 @@
#code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License)
import torch
import logging
def Fourier_filter(x, threshold, scale):
# FFT
@ -49,7 +49,7 @@ class FreeU:
try:
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
except:
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device))
on_cpu_devices[hsp.device] = True
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
else:
@ -95,7 +95,7 @@ class FreeU_V2:
try:
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
except:
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device))
on_cpu_devices[hsp.device] = True
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
else:

View File

@ -1,6 +1,7 @@
from comfy import utils
from comfy.cmd import folder_paths
import torch
import logging
def load_hypernetwork_patch(path, strength):
sd = utils.load_torch_file(path, safe_load=True)
@ -23,7 +24,7 @@ def load_hypernetwork_patch(path, strength):
}
if activation_func not in valid_activation:
print("Unsupported Hypernetwork format, if you report it I might implement it.", path, " ", activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout)
logging.error("Unsupported Hypernetwork format, if you report it I might implement it. {} {} {} {} {} {}".format(path, activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout))
return None
out = {}