mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-09 13:50:49 +08:00
214 lines
6.9 KiB
Python
214 lines
6.9 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
import torch.nn as nn
|
|
import comfy.ops
|
|
import numpy as np
|
|
|
|
ops = comfy.ops.disable_weight_init
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
|
super(ResBlock1, self).__init__()
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
),
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
),
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=get_padding(kernel_size, dilation[2]),
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
),
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
),
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=get_padding(kernel_size, 1),
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
|
super(ResBlock2, self).__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
),
|
|
ops.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x):
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
|
xt = c(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
|
|
class Vocoder(torch.nn.Module):
|
|
"""
|
|
Vocoder model for synthesizing audio from spectrograms, based on: https://github.com/jik876/hifi-gan.
|
|
|
|
"""
|
|
|
|
def __init__(self, config=None):
|
|
super(Vocoder, self).__init__()
|
|
|
|
if config is None:
|
|
config = self.get_default_config()
|
|
|
|
resblock_kernel_sizes = config.get("resblock_kernel_sizes", [3, 7, 11])
|
|
upsample_rates = config.get("upsample_rates", [6, 5, 2, 2, 2])
|
|
upsample_kernel_sizes = config.get("upsample_kernel_sizes", [16, 15, 8, 4, 4])
|
|
resblock_dilation_sizes = config.get("resblock_dilation_sizes", [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
|
upsample_initial_channel = config.get("upsample_initial_channel", 1024)
|
|
stereo = config.get("stereo", True)
|
|
resblock = config.get("resblock", "1")
|
|
|
|
self.output_sample_rate = config.get("output_sample_rate")
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
in_channels = 128 if stereo else 64
|
|
self.conv_pre = ops.Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)
|
|
resblock_class = ResBlock1 if resblock == "1" else ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
ops.ConvTranspose1d(
|
|
upsample_initial_channel // (2**i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
self.resblocks.append(resblock_class(ch, k, d))
|
|
|
|
out_channels = 2 if stereo else 1
|
|
self.conv_post = ops.Conv1d(ch, out_channels, 7, 1, padding=3)
|
|
|
|
self.upsample_factor = np.prod([self.ups[i].stride[0] for i in range(len(self.ups))])
|
|
|
|
def get_default_config(self):
|
|
"""Generate default configuration for the vocoder."""
|
|
|
|
config = {
|
|
"resblock_kernel_sizes": [3, 7, 11],
|
|
"upsample_rates": [6, 5, 2, 2, 2],
|
|
"upsample_kernel_sizes": [16, 15, 8, 4, 4],
|
|
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
"upsample_initial_channel": 1024,
|
|
"stereo": True,
|
|
"resblock": "1",
|
|
}
|
|
|
|
return config
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the vocoder.
|
|
|
|
Args:
|
|
x: Input spectrogram tensor. Can be:
|
|
- 3D: (batch_size, channels, time_steps) for mono
|
|
- 4D: (batch_size, 2, channels, time_steps) for stereo
|
|
|
|
Returns:
|
|
Audio tensor of shape (batch_size, out_channels, audio_length)
|
|
"""
|
|
if x.dim() == 4: # stereo
|
|
assert x.shape[1] == 2, "Input must have 2 channels for stereo"
|
|
x = torch.cat((x[:, 0, :, :], x[:, 1, :, :]), dim=1)
|
|
x = self.conv_pre(x)
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
else:
|
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|