ComfyUI/comfy/text_encoders/lt.py
2026-01-05 01:58:59 -05:00

130 lines
6.5 KiB
Python

from comfy import sd1_clip
import os
from transformers import T5TokenizerFast
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.genmo
from comfy.ldm.lightricks.embeddings_connector import Embeddings1DConnector
import torch
import comfy.utils
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128?
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def ltxv_te(*args, **kwargs):
return comfy.text_encoders.genmo.mochi_te(*args, **kwargs)
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class LTXAVGemmaTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma3_12b", tokenizer=Gemma3_12BTokenizer)
class Gemma3_12BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="all", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("gemma_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma3_12B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template="{}", image_embeds=None, **kwargs):
text = llama_template.format(text)
text_tokens = super().tokenize_with_weights(text, return_word_ids)
embed_count = 0
for k in text_tokens:
tt = text_tokens[k]
for r in tt:
for i in range(len(r)):
if r[i][0] == 262144:
if image_embeds is not None and embed_count < image_embeds.shape[0]:
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return text_tokens
class LTXAVTEModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
self.dtypes = set()
self.dtypes.add(dtype)
self.gemma3_12b = Gemma3_12BModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None)
self.dtypes.add(dtype_llama)
operations = self.gemma3_12b.operations # TODO
self.text_embedding_projection = operations.Linear(3840 * 49, 3840, bias=False, dtype=dtype, device=device)
self.audio_embeddings_connector = Embeddings1DConnector(
split_rope=True,
double_precision_rope=True,
dtype=dtype,
device=device,
operations=operations,
)
self.video_embeddings_connector = Embeddings1DConnector(
split_rope=True,
double_precision_rope=True,
dtype=dtype,
device=device,
operations=operations,
)
def set_clip_options(self, options):
self.gemma3_12b.set_clip_options(options)
def reset_clip_options(self):
self.gemma3_12b.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs = token_weight_pairs["gemma3_12b"]
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
out_device = out.device
out = out.movedim(1, -1).to(self.text_embedding_projection.weight.device)
out = 8.0 * (out - out.mean(dim=(1, 2), keepdim=True)) / (out.amax(dim=(1, 2), keepdim=True) - out.amin(dim=(1, 2), keepdim=True) + 1e-6)
out = out.reshape((out.shape[0], out.shape[1], -1))
out = self.text_embedding_projection(out)
out_vid = self.video_embeddings_connector(out)[0]
out_audio = self.audio_embeddings_connector(out)[0]
out = torch.concat((out_vid, out_audio), dim=-1)
return out.to(out_device), pooled
def load_sd(self, sd):
if "model.layers.47.self_attn.q_norm.weight" in sd:
return self.gemma3_12b.load_sd(sd)
else:
sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True)
if len(sdo) == 0:
sdo = sd
return self.load_state_dict(sdo, strict=False)
def ltxav_te(dtype_llama=None, llama_scaled_fp8=None):
class LTXAVTEModel_(LTXAVTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return LTXAVTEModel_