mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-23 12:50:18 +08:00
62 lines
3.6 KiB
Python
62 lines
3.6 KiB
Python
from transformers import Qwen2Tokenizer, T5TokenizerFast
|
|
import comfy.text_encoders.llama
|
|
from comfy import sd1_clip
|
|
import os
|
|
import torch
|
|
|
|
|
|
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
|
|
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
|
|
|
|
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
|
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data)
|
|
|
|
class AnimaTokenizer:
|
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
|
self.qwen3_06b = Qwen3Tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
|
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
|
|
out = {}
|
|
qwen_ids = self.qwen3_06b.tokenize_with_weights(text, return_word_ids, **kwargs)
|
|
out["qwen3_06b"] = [[(token, 1.0) for token, _ in inner_list] for inner_list in qwen_ids] # Set weights to 1.0
|
|
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
|
|
return out
|
|
|
|
def untokenize(self, token_weight_pair):
|
|
return self.t5xxl.untokenize(token_weight_pair)
|
|
|
|
def state_dict(self):
|
|
return {}
|
|
|
|
|
|
class Qwen3_06BModel(sd1_clip.SDClipModel):
|
|
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_06B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
|
|
|
|
|
class AnimaTEModel(sd1_clip.SD1ClipModel):
|
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
|
super().__init__(device=device, dtype=dtype, name="qwen3_06b", clip_model=Qwen3_06BModel, model_options=model_options)
|
|
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
out = super().encode_token_weights(token_weight_pairs)
|
|
out[2]["t5xxl_ids"] = torch.tensor(list(map(lambda a: a[0], token_weight_pairs["t5xxl"][0])), dtype=torch.int)
|
|
out[2]["t5xxl_weights"] = torch.tensor(list(map(lambda a: a[1], token_weight_pairs["t5xxl"][0])))
|
|
return out
|
|
|
|
def te(dtype_llama=None, llama_quantization_metadata=None):
|
|
class AnimaTEModel_(AnimaTEModel):
|
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
|
if dtype_llama is not None:
|
|
dtype = dtype_llama
|
|
if llama_quantization_metadata is not None:
|
|
model_options = model_options.copy()
|
|
model_options["quantization_metadata"] = llama_quantization_metadata
|
|
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
|
return AnimaTEModel_
|