mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-01-11 14:50:49 +08:00
3.8 KiB
3.8 KiB
Hardware & Software Compatibility
This project is rigorously tested on specific hardware and software configurations to ensure stability and performance.
Compatibility Matrix
Linux
| Hardware | Python | CUDA / ROCm | PyTorch | Torch-TensorRT | Container Image | Status |
|---|---|---|---|---|---|---|
| NVIDIA RTX 3090 (24GB) | 3.12 | 12.9.1 | Latest | 2.8.0a0 | nvcr.io/nvidia/pytorch:25.06-py3 |
✅ Automated |
| NVIDIA RTX 3090 (24GB) | 3.12 | 12.8.1 | Latest | 2.7.0a0 | nvcr.io/nvidia/pytorch:25.03-py3 (LTS) |
✅ Automated |
| NVIDIA RTX 3090 (24GB) | 3.10 | 12.6.2 | Latest | 2.5.0a0 | nvcr.io/nvidia/pytorch:24.10-py3 |
✅ Automated |
| NVIDIA RTX 3090 (24GB) | 3.10 | 12.3.2 | Latest | 2.2.0a0 | nvcr.io/nvidia/pytorch:23.12-py3 |
✅ Automated |
| AMD RX 7600 (8GB) | 3.12 | ROCm 7.0 | 2.7.1 (Nightly) | N/A | rocm/pytorch:rocm7.0_ubuntu24.04_py3.12_pytorch_release_2.7.1 |
✅ Automated |
AMD Note: Automated testing for AMD uses a specific nightly build of PyTorch 2.7.1 optimized for RDNA 3 (gfx110X) from https://rocm.nightlies.amd.com/v2/gfx110X-dgpu/.
macOS
| Hardware | Python | Acceleration | Status |
|---|---|---|---|
| Apple Silicon (M1/M2/M3) | 3.12 | MPS (Metal Performance Shaders) | ✅ Automated (macOS 14 Runner) |
Windows
Windows support is manually verified.
| Hardware | Python | CUDA | Drivers | PyTorch | Status |
|---|---|---|---|---|---|
| NVIDIA RTX 3090 | 3.10 - 3.12 | 12.8 | 560+ | 2.7, 2.8, 2.9 | ✅ Manually Verified |
AMD ROCm Support for Other Architectures
You can install ComfyUI with acceleration on other AMD architectures by pointing uv to the correct package index.
Architecture Table
Find your GPU in the table below to determine the correct index URL.
| Series | Models (Examples) | Architecture | Index URL |
|---|---|---|---|
| RX 9000 | RX 9070 / XT, RX 9060 / XT | RDNA 4 (gfx1200, gfx1201) |
https://rocm.nightlies.amd.com/v2/gfx120X-all/ |
| RX 7000 | RX 7900 XTX, 7800 XT, 7600 | RDNA 3 (gfx1100, gfx1101, gfx1102) |
https://rocm.nightlies.amd.com/v2/gfx110X-all/ |
| RX 7000 (M) | Radeon 780M (Laptop), 7700S | RDNA 3 (gfx1103) |
https://rocm.nightlies.amd.com/v2/gfx110X-all/ |
| Strix Halo | Strix Halo iGPU | RDNA 3.5 (gfx1151) |
https://rocm.nightlies.amd.com/v2/gfx1151/ |
| Instinct | MI300A, MI300X | CDNA 3 (gfx942) |
https://rocm.nightlies.amd.com/v2/gfx94X-dcgpu/ |
| Instinct | MI350X, MI355X | CDNA 4 (gfx950) |
https://rocm.nightlies.amd.com/v2/gfx950-dcgpu/ |
Installation Examples
Use uv pip install with the --index-url corresponding to your hardware.
RX 9000 Series (RDNA 4)
uv pip install --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/ --pre torch torchaudio torchvision
RX 7000 Series (RDNA 3)
uv pip install --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/ --pre torch torchaudio torchvision
RX 6000 Series (RDNA 2)
uv pip install --torch-backend=auto --pre torch torchvision torchaudio
RX 5000 Series (RDNA 1)
uv pip install --torch-backend=auto --pre torch torchvision torchaudio
Instinct MI300
uv pip install --index-url https://rocm.nightlies.amd.com/v2/gfx94X-dcgpu/ --pre torch torchaudio torchvision
Notes
- NVIDIA: Automated testing uses official NVIDIA PyTorch containers to ensure compatibility with the latest deep learning stack.
- AMD: Automated testing targets ROCm 7.0 on RDNA 3 architecture (RX 7000 series).
- macOS: Tested on macOS 14 runners with Python 3.12 using the
mpsbackend for acceleration. - Windows: While not part of the automated CI loop, Windows builds are manually verified against recent PyTorch and CUDA versions on standard consumer hardware.